
nctoolkit

Robert Wilson

May 07, 2022

QUICK OVERVIEW

1 Installation 3

2 Introduction to nctoolkit 5

3 News 9

4 Datasets 15

5 Plotting 21

6 Importing and exporting data 23

7 Interpolation 25

8 Temporal statistics 29

9 Subsetting data 33

10 Manipulating variables 35

11 Adding or subtracting datasets 39

12 Multi-file datasets 41

13 Parallel processing 43

14 Examples 45

15 Random Data Hacks 47

16 Global settings 49

17 Backends 51

18 Cheat sheet 53

19 API Reference 55

20 Package info 113

Python Module Index 115

Index 117

i

ii

nctoolkit

nctoolkit is a comprehensive and computationally efficient Python package for analyzing and post-processing netCDF
data on Linux and macOS.

Core abilities include:

• Cropping to geographic regions

• Interactive plotting of data

• Subsetting to specific time periods

• Calculating time averages

• Calculating spatial averages

• Calculating rolling averages

• Calculating climatologies

• Creating new variables using arithmetic operations

• Calculating anomalies

• Horizontally and vertically remapping data

• Calculating the correlations between variables

• Calculating vertical averages for the likes of oceanic data

• Calculating ensemble averages

• Calculating phenological metrics

nctoolkit is developed as open source software by the Marine Systems Modelling group at Plymouth Marine Laboratory.

QUICK OVERVIEW 1

https://www.pml.ac.uk/science/Marine-Systems-Modelling/

nctoolkit

2 QUICK OVERVIEW

CHAPTER

ONE

INSTALLATION

1.1 How to install nctoolkit

You will need a Linux or Mac operating system for nctoolkit to work. It will not work on Windows due to system
requirements.

nctoolkit is available from the Python Packaging Index. To install nctoolkit using pip:

$ pip install numpy
$ pip install nctoolkit

If you already have numpy installed, ignore the first line. This is only included as it will make installing some depen-
dencies smoother. nctoolkit partly relies on cartopy for plotting. This has some additional dependencies, so you may
need to follow their guide here to ensure cartopy is installed fully. If you install nctoolkit using conda, you will not
need to worry about that.

If you install nctoolkit from pypi, you will need to install the system dependencies listed below.

nctoolkit can also be installed using conda, as follows:

$ conda install -c conda-forge nctoolkit

Note that recent releases are not available for Python 3.8 on macOS on conda. This issue is being investigated at the
minute, and will hopefully be resolved shortly. In the meantime, if you are using macOS and Python 3.8, it is best to
install using pip.

At present this can be slow due to the time taken to resolve dependency versions. If you run into problems just use pip.

To install the development version from GitHub:

$ pip install git+https://github.com/r4ecology/nctoolkit.git

1.2 Plotting issue

An update to a dependency of a dependency has broken plotting in nctoolkit. If you experience an error related to
jinja2, downgrad the package as follows:

$ conda install jinja2=3.0.3
$ pip install jinja2==3.0.3

3

https://pypi.org/project/nctoolkit/
https://pypi.org/project/nctoolkit/

nctoolkit

1.3 Jupyter notebook issue

A recent update to ipykernel has broken some functionality in jupyter notebooks, with Python not exiting properly
when notebooks are restarted or closed. This is resulting in nctoolkit not automatically deleting temporary files at the
end of sessions. To fix this just downgrade ipykernel:

$ conda install ipykernel=6.9.1
$ pip install ipykernel==6.9.1

1.4 CDO update issue

The latest version of CDO is incompatible with nctoolkit at present, due to the switch to C++14 in CDO. This will
be rectified in an upcoming version of nctoolkit. For now, if you have version 2.0.0 of CDO installed, you should
downgrade it. If you are using conda, just do this:

$ conda install -c conda-forge cdo=1.9.10

1.5 Python dependencies

• Python (3.6 or later)

• numpy (1.14 or later)

• pandas (0.24 or later)

• xarray (0.14 or later)

• netCDF4 (1.53 or later)

• ncplot

1.6 System dependencies

There are two main system dependencies: Climate Data Operators, and NCO. The easiest way to install them is using
conda:

$ conda install -c conda-forge cdo

$ conda install -c conda-forge nco

CDO is necessary for the package to work. NCO is an optional dependency and does not have to be installed.

If you want to install CDO from source, you can use one of the bash scripts available here.

4 Chapter 1. Installation

http://www.numpy.org/
http://pandas.pydata.org/
http://xarray.pydata.org/en/stable/
https://unidata.github.io/netCDF4-python/netCDF4/index.html
https://ncplot.readthedocs.io/en/stable/
https://code.mpimet.mpg.de/projects/cdo/wiki
http://nco.sourceforge.net/
https://github.com/r4ecology/nctoolkit/tree/master/cdo_installers

CHAPTER

TWO

INTRODUCTION TO NCTOOLKIT

nctoolkit is a multi-purpose tool for analyzing and post-processing netCDF files. It is designed to carry out almost all
analysis and post-processing chains, and to do so easily and efficiently. It is designed explicitly with climate change and
oceanographic work in mind. Under the hood, it uses Climate Data Operators (CDO), but it operates as a stand-alone
package with no knowledge of CDO being required to use it.

Let’s look at what it can do using a historical global dataset of sea surface temperature, which you can find here.

The preferred way to import nctoolkit is:

[1]: import nctoolkit as nc

nctoolkit is using Climate Data Operators version 1.9.10

2.1 It lets you quickly visualize data

nctoolkit offers plotting functionality that will let you automatically plot data from almost any type of netCDF file. It’s
as simple as the following, which calculates mean historical sea surface temperature and then plots it:

[2]: ds = nc.open_data("sst.mon.mean.nc")
ds.plot()

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[2]: :DynamicMap [time]
:Overlay

.Image.I :Image [lon,lat] (sst)

.Coastline.I :Feature [Longitude,Latitude]

5

https://code.mpimet.mpg.de/projects/cdo/
https://psl.noaa.gov/data/gridded/data.cobe2.html

nctoolkit

2.2 It lets you calculate spatial averages

Calculating the spatial mean

[3]: ds = nc.open_data("sst.mon.mean.nc")
ds.spatial_mean()
ds.plot()

[3]: :DynamicMap [variable]
:Curve [time] (value)

2.3 It lets you do mathematical operations

nctoolkit offers an ‘assign’ method for performing mathematical operations on variables. This works in a way that will
be familiar to users of Pandas. The method is illustrated below in a processing chain that works out how much warmer
each part of the ocean is than the global mean.

[4]: ds = nc.open_data("sst.mon.mean.nc")
ds.tmean()
ds.assign(delta = lambda x: x.sst - spatial_mean(x.sst), drop = True)
ds.plot()

[4]: :Overlay
.Image.I :Image [lon,lat] (delta)
.Coastline.I :Feature [Longitude,Latitude]

2.4 It lets you crop data

We can crop to a specific region using the crop method. To get a region covering most of Europe, we could do this:

[5]: ds = nc.open_data("sst.mon.mean.nc")
ds.crop(lon = [-13, 38], lat = [30, 67])
ds.plot()

[5]: :DynamicMap [time]
:Overlay

.Image.I :Image [lon,lat] (sst)

.Coastline.I :Feature [Longitude,Latitude]

6 Chapter 2. Introduction to nctoolkit

nctoolkit

2.5 It lets you regrid data

nctoolkit has built-in methods for regridding data to user-specified grids. One of the most useful is to_latlon. This
let’s you regrid to a regular latlon grid. You just need to specify the extent of the new grid, the resolution and the
regridding method.

[6]: ds = nc.open_data("sst.mon.mean.nc")
ds.to_latlon(lon = [-13, 38], lat = [30, 67], res = 0.5, method = "nn")
ds.plot()

[6]: :DynamicMap [time]
:Overlay

.Image.I :Image [lon,lat] (sst)

.Coastline.I :Feature [Longitude,Latitude]

2.6 It lets you calculate temporal averages

nctoolkit features a suite of methods, beginning with the letter t, that let you calculate temporal statistics. For example,
if we wanted to calculate how much sea surface temperature varies each year, we could do this:

[7]: ds = nc.open_data("sst.mon.mean.nc")
ds.trange("year")
ds.tmean()
ds.plot()

[7]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

2.7 It lets you calculate anomalies

In an example above we calculated the global mean sea surface temperature every month since 1850. But calculate
the anomaly might be more interesting. The code below will calculate the change in global annual mean sea surface
temperature since 1850-1969. The window argument let’s you calculate it on a rolling basis.

[8]: ds = nc.open_data("sst.mon.mean.nc")
ds.spatial_mean()
ds.annual_anomaly(baseline = [1850, 1869], window= 20)
ds.plot("sst")

[8]: :DynamicMap [variable]
:Curve [time] (value)

2.5. It lets you regrid data 7

nctoolkit

2.8 It lets you calculate zonal averages

It is easy to calculate zonal averages using nctoolkit. In the example below change in temperature since 1850-1869 in
each latitude band is calculated:

[9]: ds = nc.open_data("sst.mon.mean.nc")
ds.annual_anomaly(baseline = [1850, 1869], window= 20)
ds.zonal_mean()
ds.plot()

[9]: :QuadMesh [time,lat] (sst)

2.9 Getting started with nctoolkit

To get started with nctoolkit it is best to start here, and to consider getting the cheatsheet.

8 Chapter 2. Introduction to nctoolkit

CHAPTER

THREE

NEWS

3.1 Release of v0.4.4

Version 0.4.4 will be released in later May 2022.

This version will introduce a new experimental class called Validator. The aim of this class is to provide a streamlined
automated validation procedure for climate and marine models. It will ingest gridded NetCDF data of model and
observational data and generate validation plots and summaries.

A new method unify will be introduced. This will provide an automated procedure for putting datasets on the same
spatial and temporal framework. The method will put the datasets onto the same horizontal and vertical grids by
interpolating the second dataset onto the first dataset’s grids. Temporal matching will occur so that, for example, if one
dataset has daily data and another has monthly data, a monthly mean will replace the daily dataset.

3.2 Release of v0.4.3

Version 0.4.3 was released in May 2022. This is release with some new methods, improvements to internals some bug
fixes. Code written for previous 0.4x versions of nctoolkit will be compatible.

This version will be compatible with CDO versions 2.0.5x.

A new function open_geotiff will allow GeoTiff files to be opened. This is a wrapper around rioxarray, which will
convert the GeoTiff to NetCDF. It will require rioxarray to be installed.

A new method surface_mask has been added to enable identifying top levels with data in cases when there are missing
values in the actual top level.

A new method is_corrupt has been added. This can identify whether NetCDF files are likely to be corrupt. Under-the
hood, methods will now suggest running is_corrupt when system errors imply the files are corrupt.

The methods to_xarray and to_dataframe no long accept the cdo_times argument, as this has essentially been
redundant for a few nctoolkit versions.

The plot method now lets users send kwargs to hvplot to make customizations, such as log-scales an option. This will
require the latest version of ncplot.

The select method now lets user select days of month, using ds.select(day = 1).

The split method now allows splitting by timestep using split("timestep").

9

nctoolkit

3.3 Release of v0.4.2

Version 0.4.2 was released in March 2022.

This is a minor release with a couple of method enhancements. Plots can now be saved to html files using the out
arguments. The nco_command method now works over multiple cores when these are set using nc.options.

3.4 Release of v0.4.1

Version 0.4.1 was released in March 2022. This is a minor release focusing on improving nctoolkit internals.

A new method, called check is introduced that can be used to troubleshoot data problems and to ensure there are no
obvious data issues (such as a lack of CF-compliance).

Users can now access dataset calendars using ds.calendar.

The drop method now lets you remove time steps using the times argument.

The dataset attribute variables_detailed is now removed after being replaced by contents in version 0.3.9.

This version will recommend CDO versions greater than 1.9.7, because ensuring nctoolkit compatibility with earlier
versions was becoming difficult and likely of little need to users.

Some coding improvements have enhanced the performance of the add, subtract etc. methods.

Bug fixes: The methods multiply etc. failed when datasets did not have time as a dimension in version 0.4.0. This is
now fixed. Previously, ds.contents always returned None for the number of time steps. Now fixed.

3.5 Release of v0.4.0

Version 0.4.0 was released in January 2022. This is a major release that features some breaking changes. Methods for
adding, subtracting, multipling and substracting datasets from each other will be enhanced. Until now these methods
used a simplistic approach values from matching time steps were added to each other, etc. So if you are subtracting a
12 time step file from a dataset, only the first 12 time steps were subtracted from. However, often this is not what you
want. For example, you might want to subtract yearly months from a file which contains montly values for each year.

This version of nctoolkit updates these methods so that it can figure out what kind of addition etc. it should carry out.
For example, if you have a dataset which has monthly values for each year from 1950 to 1999, and use subtract to
subtract the values from a file which contains annual means for each year from 1950, it will subtract the annual mean
for 1950 from each month in 1950 and the the annual mean for 1951 from each month in 1951, and so on.

Users are now able to specify the numeric precision of datasets using ds.set_precision. By default uses the under-
lying netCDF file’s data type. This is normally not a problem. However, when the data type is integer, this can cause
problems. nc.open_data has been updated with this issue in mind. It will now warn users when the data type of the
netCDF is integer, and it suggested switching to float ‘F64’ or ‘F32’.

The drop method has been enhanced. It now accepts day, month and year as arguments to enable dropping specific
time periods. For example ds.drop(month = 2, day = 29) will remove leap days. Code written to use the old
drop method will now fail, as keywords are now required.

The method surface has now been renamed top for consistency with bottom. surface is deprecated and will be
removed in a few months.

The split method now allows users to split datasets into multiple files by variable.

ds.times now returns a datetime object, not a str as before.

10 Chapter 3. News

nctoolkit

3.6 Release of v0.3.9

Version 0.3.9 was released in November 2021. This is minor release focusing on under-the-hood improvements and
new methods.

A new method, from_xarray is added for converting xarray datasets to nctoolkit datasets.

Methods for identifying how many missing values appear in datasets have been added: na_count and na_frac. These
will identify the number or fraction of values that are missing values in each grid cell. The methods operate the same
way as the temporal methods. So ds.na_frac(“year”) will result in what fraction of values are missing values each year.

Methods for better upscaling of datasets will be added: box_mean, box_sum, box_max. This will allow you to upscale
to, for example, each 10 by 10 grid box using the mean of that grid box. This is useful for upscaling things like
population data where you want the upscaled grid boxes to represent the entirety of the grid box, not the centre.

Improvements to merge have been made. When variables are not included in all files nctoolkit will now only merge
those in each file in a multi-file dataset. Previously it threw an error.

Functions for finding the times and months in netCDF files are now available: nc_years and ``nc_months`.

The attribute variables_detailed has been changed to contents. It will also now give the number of time steps
available for each variable.

cdo_command now allows users to specify whether the CDO command used is an ensemble method. Previously meth-
ods applied on a file by file basis.

3.7 Release of v0.3.8

Version 0.3.8 was released in October 2021. This is a minor release, focusing on under-the-hood improvements and
introducing better handling of files with varying vertical layers.

A method, vertical_integration for calculating vertically integrated totals for netCDF data of the likes of oceanic
data, where the vertical levels vary spatially, were introduced. vertical_mean has been improved and can now cal-
culate vertical mean in cases where the cell thickness varies in space.

merge_time is deprecated, and its functionality will be incorporated into merge. So, following this release ensemble
merging should use merge.

open_url is now able to handle multiple urls. Previously it could only handle one.

Some under-the-hood improvements have been made to assign to ensure that truth statements do not occassionally
throw an error.

3.8 Release of v0.3.7

Version 0.3.7 was released in August 2021. This is a minor release.

New mathematical methods for simple operations on variables were added: abs, power, square, sqrt, exp, log and
log10. These methods match numpy names.

Bug fixes: assign previously did not work with log10. Now fixed.

compare_all was deleted after a period of deprecation.

3.6. Release of v0.3.9 11

nctoolkit

3.9 Release of v0.3.6

Version 0.3.6 was released in July 2021. This was a minor release.

New methods ensemble_var and ensemble_stdev were introduced for calculating variance and standard deviation
across ensembles. The method tvariance will be deprecated and is now renamed tvar for naming consistency.

3.10 Release of v0.3.5

Version 0.3.5 was released in May 2021.

This is a minor release focusing on some under-the-hood improvements in performance and a couple of new methods.

It drops support for CDO version 1.9.3, as this is becoming too time-consuming to continue given the increasingly low
reward.

A couple of new methods have been added. distribute enables files to be split up spatially into equally sized m by
n rectangles. collect is the reverse of distribute. It will collect distributed data into one file.

In prior releases assign calls could not be split over multiple lines. This is now fixed.

There was a bug in previous releases where regrid did not work with multi-file datasets. This was due to the enabling
of parallel processing with nctoolkit. The issue is now fixed.

The deprecated methods mutate and assign have now been removed. Variable creation should use assign.

3.11 Release of v0.3.4

Version 0.3.3 was released in April 2021.

This was a minor release focusing on performance improvements, removal of deprecated methods and introduction of
one new method.

A new method fill_na has been introduced that allows missing values to be filled with the distanced weighted average.

The methods remove_variables and cell_areas have been removed and are replaced permanently by drop and
cell_area.

3.12 Release of v0.3.2

Version 0.3.2 was released in March 2021. This was a quick release to fix a bug causing to_nc to not save output in
the base directory.

12 Chapter 3. News

nctoolkit

3.13 Release of v0.3.1

Version 0.3.1 was released in March 2021. This is a minor release that includes new methods, under-the-hood improve-
ments and the removal of deprecated methods.

New methods are introduced for identifying the first time step will specific numerical thresholds are first exceeded
or fallen below etc: first_above, first_below, last_above and last_below. The thresholds are either single
numbers or can come from a gridded dataset for grid-cell specific thresholds.

Methods to compare a dataset with another dataset or netCDF file have been added: gt and lt, which stand for ‘greater
than’ and ‘less than’.

Users are be able to recycle the weights calculated when interpolating data. This can enable much faster interpolation
of multiple files with the same grid.

The temporal methods replaced by tmean etc. have now been removed from the package. So monthly_mean etc. can
no longer be used.

3.14 Release of v0.3.0

Version 0.3.0 was released in February 2021. This will be a major release introducing major improvements to the
package.

A new method assign is now available for generating new variables. This replaces the mutate and transmute, which
were place-holder functions in the early releases of nctoolkit until a proper method for creating variables was put in
place. assign operates in the same way as the assign method in Pandas. Users can generate new variables using
lambda functions.

A major-change in this release is that evaluation is now lazy by default. The previous default of non-lazy evaluation
was designed to make life slightly easier for new users of the package, but it is probably overly annoying for users to
have to set evaluation to lazy each time they use the package.

This release features a subtle shift in how datasets work, so that they have consistent list-like properties. Previously,
the files in a dataset given by the `current` attribute could be both a str or a list, depending on whether there was
one or more files in the dataset. This now always gives a list. As a result datasets in nctoolkit have list-like properties,
with `append and remove methods available for adding and removing files. remove is a new method in this release.
As before datasets are iterable.

This release will also allow users to run nctoolkit in parallel. Previous releases allowed files in multi-file datasets to
be processed in parallel. However, it was not possible to create processing chains and process files in parallel. This is
now possible in version thanks to under-the-hood changes in nctoolkit’s code base.

Users are now able to add a configuration file, which means global settings do not need to be set in every session or in
every script.

3.13. Release of v0.3.1 13

nctoolkit

14 Chapter 3. News

CHAPTER

FOUR

DATASETS

4.1 Data format requirements

nctoolkit requires NetCDF data that follow the GDT, COARDS or CF Conventions. Its computational backend is CDO,
which be able to carry out most operations regardless of whether it is compliant with those conventions. In general, most
data producers follow CF-conventions when generating NetCDF files, however if you are unclear if you are working
with compliant files you can check here.

4.2 Opening datasets

There are 3 ways to create a dataset: open_data, open_url or open_thredds.

If the data you want to analyze is available on your computer use open_data. This will accept either a path to a single
file or a list of files. It will also accept wildcards.

If you want to use data that can be downloaded from a url, just use open_url. This will download the netCDF files to
a temporary folder, and it can then be analyzed.

If you want to analyze data that is available from a thredds server or OPeNDAP, then use open_thredds. The file
paths should end with .nc.

[1]: import nctoolkit as nc

nctoolkit is using Climate Data Operators version 1.9.10

If you want to get a quick overview of the contents of a dataset, we can use the contents attribute. This will display
a dataframe showing the variables available in the dataset and details about the variable, such as the units and long
names. The example below opens a sea-surface temperature dataset and displays the contents.

[2]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-
→˓2010.nc")
ds.contents

[2]: variable ntimes npoints nlevels \
0 sst 12 64800 1
1 valid_yr_count 12 64800 1

long_name unit data_type
0 Long Term Mean Monthly Means of Global Sea Sur... degC F32
1 count of non-missing values used in mean None I16

15

https://code.mpimet.mpg.de/projects/cdo/
https://pumatest.nerc.ac.uk/cgi-bin/cf-checker.pl
https://psl.noaa.gov/data/gridded/data.cobe2.html

nctoolkit

4.3 Checking validity of source data

nctoolkit should work out of the box with most NetCDF data. However, it is possibly the format of the data could be
incompatible with the system libraries used by nctoolkit or the files could be corrupt. To carry out a general check on
the data use the check method as follows:

[]: ds.check()

This will carry out some basic checks on data format compatability. You should install the cfchecker package if you
want check to check for CF-compliance.

If you want to check if the files in a dataset are corrupt, the following should tell you. This will simply read and write
the data in the source files to a temporary file, which should be sufficient to ensure files are not corrupt.

[]: ds.is_corrupt()

4.4 Modifying datasets

If you want to modify a dataset, you just need to use nctoolkit’s built in methods. These methods operate directly on
the dataset itself. The example below selects the first time step in a sea surface temperature dataset and plots the result.

ds = nc.open_thredds(“https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc”)
ds.select(time = 0) ds.plot()

Underlying datasets are temporary files representing the current state of the dataset. We can access this using the
current attribute:

[3]: ds.current

[3]: ['https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc']

In this case, we have a single temporary file. Any temporary files will be generated and deleted, as needed, so there
should be no need to manage them yourself.

4.5 Lazy evaluation by default

Look at the processing chain below.

[4]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-
→˓2010.nc")
ds.assign(sst = lambda x: x.sst + 273.15)
ds.select(months = 1)
ds.crop(lon = [-80, 20], lat = [30, 70])
ds.spatial_mean()

What is potentially wrong with this? It carries out four operations, so we absolutely do not want to create temporary
file in each step. So instead of evaluating the operations line by line, nctoolkit only evaluates them either when you tell
it to or it has to. So in the code example above we have told, nctoolkit what to do to that dataset, but have not told it to
actually do any of it.

We can see this if we look at the current state of the dataset. It is still the starting point:

16 Chapter 4. Datasets

https://anaconda.org/conda-forge/cfchecker
https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc

nctoolkit

[5]: ds.current

[5]: ['https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc']

If we want to evaluate this we can use the run method or methods such as plot that require commands to be evaluated.

[6]: ds.run()
ds.current

[6]: ['/tmp/nctoolkitrhzlwgvwnctoolkittmpzs2xhydf.nc']

This method chaining ability within nctoolkit comes from Climate Data Operators (CDO), which is the backend com-
putational engine for nctoolkit. nctoolkit does not require you to understand CDO, but if you want to see the underlying
CDO commands used, just use the history attribute. In the example, below, you can see that 4 lines of Python code
have been converted to a single CDO command.

[7]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-
→˓2010.nc")
ds.assign(sst = lambda x: x.sst + 273.15)
ds.select(months = 1)
ds.crop(lon = [-80, 20], lat = [30, 70])
ds.spatial_mean()
ds.history

[7]: ["cdo -fldmean -L -sellonlatbox,-80,20,30,70 -selmonth,1 -aexpr,'sst=sst+273.15'"]

Then if we run this, we can see the full command used:

[8]: ds.run()
ds.history

[8]: ["cdo -L -fldmean -sellonlatbox,-80,20,30,70 -selmonth,1 -aexpr,'sst=sst+273.15' https:/
→˓/psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc /tmp/
→˓nctoolkitrhzlwgvwnctoolkittmpzuyxvisb.nc"]

If you want to visualize a dataset, you just need to use plot:

[9]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-
→˓2010.nc")
ds.select(time = 0)
ds.plot()

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

4.5. Lazy evaluation by default 17

https://code.mpimet.mpg.de/projects/cdo/

nctoolkit

Unable to decode time axis into full numpy.datetime64 objects, continuing using cftime.
→˓datetime objects instead, reason: dates out of range
Unable to decode time axis into full numpy.datetime64 objects, continuing using cftime.
→˓datetime objects instead, reason: dates out of range

[9]: :DynamicMap [Variable]
:Overlay

.Image.I :Image [lon,lat] (sst)

.Coastline.I :Feature [Longitude,Latitude]

4.6 Method chaining

When you start to use nctoolkit it is important to realize that it does not allow method chaining in the way pandas and
xarray do. So the following will not work:

[10]: (
ds
.tmean()
.spatial_mean()
.add(1)

)

AttributeError Traceback (most recent call last)
Input In [10], in <cell line: 2>()

1 (
----> 2 ds

3 .tmean()
4 .spatial_mean()
5 .add(1)
6)

AttributeError: 'NoneType' object has no attribute 'spatial_mean'

This is because this type of method chaining requires the methods to return an object. However, nctoolkit’s methods in
general do not return objects. Instead they modify them.

You would need to do the following instead:

[11]: ds.tmean()
ds.spatial_mean()
ds.add(1)

18 Chapter 4. Datasets

nctoolkit

4.7 Dataset attributes

You can find out key information about a dataset using its attributes. If you want to know the variables available in a
dataset called ds, we would do:

[12]: ds.variables

[12]: ['sst', 'valid_yr_count']

If you want more details about the variables, access the contents attribute. This will tell you details such as long
names, units, number of time steps etc. for each variable.

[13]: ds.contents

[13]: variable ntimes npoints nlevels \
0 sst 1 64800 1
1 valid_yr_count 1 64800 1

long_name unit data_type
0 Long Term Mean Monthly Means of Global Sea Sur... degC F32
1 count of non-missing values used in mean None I16

If you want to know the vertical levels available in the dataset, we use the following.

[14]: ds.levels

[14]: [0.0]

If you want to know the files in a dataset, we would do this. nctoolkit works by generating temporary files, so if you
have carried out any operations, this will show a list of temporary files.

[15]: ds.current

[15]: ['/tmp/nctoolkitrhzlwgvwnctoolkittmprfua3zvb.nc']

If you want to find out what times are in the dataset we do this:

[16]: ds.times

[16]: [datetime.datetime(1, 1, 1, 0, 0)]

If you want to find out what months are in the dataset:

[17]: ds.months

[17]: [1]

If you want to find out what years are in the dataset:

[18]: ds.years

[18]: [1]

We can also access the history of operations carried out on the dataset. This will show the operations carried out by
nctoolkit’s computational back-end CDO:

[19]: ds.history

4.7. Dataset attributes 19

nctoolkit

[19]: ['cdo -L -seltimestep,1 https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.
→˓1981-2010.nc /tmp/nctoolkitrhzlwgvwnctoolkittmprfua3zvb.nc',
'cdo -addc,1 -fldmean -timmean -timmean']

20 Chapter 4. Datasets

CHAPTER

FIVE

PLOTTING

nctoolkit provides automatic plotting of netCDF data in a similar way to the command line tool ncview.

If you have a dataset, simply use the plot method to create an interactive plot that matches the data type.

We can illustate this using a sea surface temperature dataset available here.

Let’s start by calculating mean sea surface temperature for the year 2000 and plotting it:

[1]: import nctoolkit as nc
ff = "sst.mon.mean.nc"
ds = nc.open_data(ff)
ds.select(year = 2000)
ds.tmean()
ds.plot()

nctoolkit is using Climate Data Operators version 1.9.10

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[1]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

We might be interested in the zonal mean. nctoolkit can automatically plot this easily:

[2]: ff = "sst.mon.mean.nc"
ds = nc.open_data(ff)
ds.select(year = 2000)
ds.tmean()

(continues on next page)

21

https://psl.noaa.gov/data/gridded/data.cobe2.html

nctoolkit

(continued from previous page)

ds.zonal_mean()
ds.plot()

[2]: :DynamicMap [variable]
:Curve [lat] (value)

nctoolkit can also easily handle heat maps. So, we can easily plot the change in zonal mean over time:

[3]: ff = "sst.mon.mean.nc"
ds = nc.open_data(ff)
ds.zonal_mean()
ds.annual_anomaly(baseline = [1850, 1869], window = 20)
ds.plot()

[3]: :QuadMesh [time,lat] (sst)

In a similar vein, it can automatically handle time series. Below we plot a time series of global mean sea surface
temperature since 1850:

[4]: ff = "sst.mon.mean.nc"
ds = nc.open_data(ff)
ds.spatial_mean()
ds.plot()

[4]: :DynamicMap [variable]
:Curve [time] (value)

5.1 Internal: ncplot

Plotting is carried out using the ncplot package. If you come across any errors, please raise an issue here.

This is a package that aims to deliver easy use. Colour scales for heat map default to a diverging blue-to-red pallette
when there are positives and negatives and a viridis palette otherwise.

22 Chapter 5. Plotting

https://github.com/pmlmodelling/ncplot

CHAPTER

SIX

IMPORTING AND EXPORTING DATA

nctoolkit can work with data available on local file systems, urls and over thredds and OPeNDAP.

6.1 Opening single files and ensembles

If you want to import a single netCDF file as a dataset, do the following:

import nctoolkit as nc
ds = nc.open_data(infile)

The open_data function can also import multiple files. This can be done in two ways. If we have a list of files we can
do the following:

import nctoolkit as nc
ds = nc.open_data(file_list)

Alternatively, open_data is capable of handling wildcards. So if we have a folder called data, we can import all files in
it as follows:

import nctoolkit as nc
ds = nc.open_data("data/*.nc")

6.2 Opening files from urls/ftp

If we want to work with a file that is available at a url or ftp, we can use the open_url function. This will start by
downloading the file to a temporary folder, so that it can be analysed.

import nctoolkit as nc
ds = nc.open_url(www.foo.nc)

23

nctoolkit

6.3 Opening data available over thredds servers or OPeNDAP

If you want to work with data that is available over a thredds server or OPeNDAP, you can use the open_thredds method.
This will require that the url ends with “.nc”.

import nctoolkit as nc
ds = nc.open_thredds(www.foo.nc)

6.4 Exporting datasets

nctoolkit has a number of built in methods for exporting data to netCDF, pandas dataframes and xarray datasets.

6.5 Save as a netCDF

The method to_nc lets users export a dataset to a netCDF file. If you want this to be a zipped netCDF file use the zip
method before to to_nc. An example of usage is as follows:

ds = nc.open_data(infile)
ds.tmean()
ds.zip()
ds.to_nc(outfile)

6.6 Convert to pandas dataframe

The method to_dataframe lets users export a dataset to a pandas dataframe.

ds = nc.open_data(infile)
ds.tmean()
df = ds.to_dataframe()

6.7 Interacting with xarray datasets

If you want to move between nctoolkit and xarray dataset, you can use from_xarray and to_xarray.

The method to_xarray lets users export a dataset to an xarray dataset. An example of usage is as follows:

ds = nc.open_data(infile)
ds.tmean()
xr_ds = ds.to_xarray()

If you want to convert an xarray dataset to an nctoolkit dataset, you can just the from_xarray function, as follows:

24 Chapter 6. Importing and exporting data

CHAPTER

SEVEN

INTERPOLATION

nctoolkit features built in methods for horizontal and vertical interpolation.

7.1 Horizontal interpolation

We will illustrate how to carry out horizontal interpolation using a global dataset of global SST from NOAA. Find out
more information about the datset here.

The data is available using a thredds server. So we will work with the first time step, which looks like this:

[1]: import nctoolkit as nc
ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc")
ds.select(time = 0)
ds.plot()

nctoolkit is using Climate Data Operators version 1.9.10

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[1]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

25

https://psl.noaa.gov/data/gridded/data.cobe2.html

nctoolkit

7.2 Interpolating to a set of coordinates

If you want to regrid a dataset to a specified set of coordinates you can regrid and a pandas dataframe. The first
column of the dataframe should be the longitudes and the second should be latitudes. The example below regrids a
sea-surface temperature dataset to a single location with longitude -30 and latitude 50.

[2]: import pandas as pd
ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc")
ds.select(timestep = 0)
coords = pd.DataFrame({"lon":[-30], "lat":[50]})
ds.regrid(coords)
ds.to_dataframe()

[2]: lon lat sst
time ncells
1850-01-01 0 -30.0 50.0 10.935501

7.3 Interpolating to a regular lonlat grid

If you want to interpolate to a regular latlon grid, you can use to_latlon. lon and lat specify the minimum and
maximum longitudes and latitudes, while res, a 2 variable list specifies the resolution. For example, if we wanted to
regrid the globe to 0.5 degree north-south by 1 degree east-west resolution, we could do the following:

[3]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc")
ds.select(timestep = 0)
ds.to_latlon(lon = [-79.5, 79.5], lat = [0.75, 89.75], res = [1, 0.5])
ds.plot()

[3]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

7.4 Interpolating to another dataset’s grid

If we are working with two datasets and want to put them on a common grid, we can interpolate one onto the other’s
grid. We can illustate this with a dataset of global sea surface temperature. Let’s start by cropping this dataset to the
northern hemisphere.

[4]: ds1 = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc
→˓")
ds1.select(timestep = 0)
ds1.crop(lat = [0, 90])
ds1.plot()

[4]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

Now, we can regrid the original file to this northern hemisphere grid.

26 Chapter 7. Interpolation

nctoolkit

[5]: ds2 = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc
→˓")
ds2.select(timestep = 0)
ds2.regrid(ds1)
ds2.plot()

[5]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

This method will also work using netCDF files. So, if you wanted you can also use a path to a netCDF file as the target
grid.

7.5 How to reuse the weights for regridding

Under the hood nctoolkit regrids data by first generating a weights file. There are situations where you will want to
be able to re-use these weights. For example, if you are post-processing a large number of files one after the other.
To make this easier nctoolkit let’s you recycle the regridding info. This let’s you interpolate using either regrid or
to_latlon, but keep the regridding data for future use by regrid.

[6]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc")
ds.select(timestep = 0)
ds.to_latlon(lon = [-79.5, 79.5], lat = [-0.75, 89.75], res = [1, 0.5], recycle = True)
ds.plot()

[6]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

[7]: ds1 = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc
→˓")
ds1.select(timestep = 0)
ds1.regrid(ds)
ds1.plot()

[7]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

7.6 Horizontal Resampling

If you want to make data more coarse spatially, just use the resample_grid method. This will, for example, let
you select every 2nd grid grid cell in a north-south and east-west direction. This is illustrated in the example below,
where a dataset which has spatial resolution of 1 by 1 degrees is coarsened, so that only every 10th cell is selected in a
north-south and east-west. In other words it is now a 10 degrees by 10 degrees dataset.

[8]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc")
ds.select(timestep = 0)

(continues on next page)

7.5. How to reuse the weights for regridding 27

nctoolkit

(continued from previous page)

ds.resample_grid(10)
ds.plot()

[8]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

7.7 Spatial Infilling

Some times you will have data with missing values, which you want to replace with a nearby value. nctoolkit handles this
situation using the fill_na method. This uses distance-weighting. You just need to specify the number of nearest-
neighbours to use for the weighting. For example, if you simply want to replace missing values with their nearest
neighbour, you just set the number to 1, as follows:

[9]: ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc")
ds.select(timestep = 0)
ds.fill_na(1)
ds.plot()

[9]: :Overlay
.Image.I :Image [lon,lat] (sst)
.Coastline.I :Feature [Longitude,Latitude]

7.8 Vertical interpolation

We can carry out vertical interpolation using the vertical_interp method. This is particularly useful for oceanic
data. This is illustrated below by interpolating depth-resolved ocean temperatures from NOAA’s World Ocean Atlas
for January to a depth of 500 metres. The vertical_interp method requires a levels argument, which is sea-depth
in this case.

[10]: ds = nc.open_thredds("https://data.nodc.noaa.gov/thredds/dodsC/ncei/woa/temperature/A5B7/
→˓1.00/woa18_A5B7_t01_01.nc")
ds.select(variables="t_an")
ds.vertical_interp(levels= [500])
ds.plot()

Warning: xarray could not decode times!

[10]: :Overlay
.Image.I :Image [lon,lat] (t_an)
.Coastline.I :Feature [Longitude,Latitude]

[]:

28 Chapter 7. Interpolation

https://www.ncei.noaa.gov/products/world-ocean-atlas

CHAPTER

EIGHT

TEMPORAL STATISTICS

nctoolkit has a number of built-in methods for calculating temporal statistics, all of which are prefixed with t: tmean,
tmin, tmax, trange, tpercentile, tmedian, tvariance, tstdev and tcumsum.

These methods allow you to quickly calculate temporal statistics over specified time periods using the over argument.

By default the methods calculate the value over all time steps available. For example the following will calculate the
temporal mean:

import nctoolkit as nc
ds = nc.open_data("sst.mon.mean.nc")
ds.tmean()

However, you may want to calculate, for example, an annual average. To do this we use over. This is a list which tells
the function which time periods to average over. For example, the following will calculate an annual average:

ds.tmean(["year"])

If you are only averaging over one time period, as above, you can simply use a character string:

ds.tmean("year")

The possible options for over are “day”, “month”, “year”, and “season”. In this case “day” stands for day of year, not
day of month.

In the example below we are calculating the maximum value in each month of each year in the dataset.

ds.tmax(["month", "year"])

8.1 Calculating rolling averages

nctoolkit has a range of methods to calcate rolling averages: rolling_mean, rolling_min, rolling_max,
rolling_range and rolling_sum. These methods let you calculate rolling statistics over a specified time window.
For example, if you had daily data and you wanted to calculate a rolling weekly mean value, you could do the following:

ds.rolling_mean(7)

If you wanted to calculated a rolling weekly sum, this would do:

ds.rolling_sum(7)

29

nctoolkit

8.2 Calculating anomalies

nctoolkit has two methods for calculating anomalies: annual_anomaly and monthly_anomaly. Both methods require
you to specify a baseline period to calculate the anomaly against. They require that you specify a baseline period
showing the minimum and maximum years of the climatological period to compare against.

So, if you wanted to calculate the annual anomaly compared with a baseline period of 1950-1969, you would do this:

ds.annual_anomaly(baseline = [1950, 1969])

By default, the annual anomaly is calculated as the absolute difference between the annual mean in a year and the mean
across the baseline period. However, in some cases this is not suitable. Instead you might want the relative change. In
that case, you would do the following:

ds.annual_anomaly(baseline = [1950, 1969], metric = "relative")

You can also smooth out the anomalies, so that they are calculated on a rolling basis. The following will calculate the
anomaly using a rolling window of 10 years.

ds.annual_anomaly(baseline = [1950, 1969], window = 10)

Monthly anomalies are calculated in the same way:

ds.monthly_anomaly(baseline = [1950, 1969]

Here the anomaly is the difference between the value in each month compared with the mean in that month during the
baseline period.

8.3 Calculating climatologies

This means we can easily calculate climatologies. For example the following will calculate a seasonal climatology:

ds.tmean("season")

These methods allow partial matches for the arguments, which means you do not need to remember the precise argument
each time. For example, the following will also calculate a seasonal climatology:

ds.tmean("Seas")

Calculating a climatological monthly mean would require the following:

ds.tmean("month")

and daily would be the following:

ds.tmean("day")

30 Chapter 8. Temporal statistics

nctoolkit

8.4 Calculating climatologies

This means we can easily calculate climatologies. For example the following will calculate a seasonal climatology:

ds.tmean("season")

8.5 Cumulative sums

We can calculate the cumulative sum as follows:

ds.tcumsum()

Please note that this can only calculate over all time periods, and does not accept an over argument.

8.4. Calculating climatologies 31

nctoolkit

32 Chapter 8. Temporal statistics

CHAPTER

NINE

SUBSETTING DATA

nctoolkit has many built in methods for subsetting data. The main method is select. This let’s you select specific
variables, years, months, seasons and timesteps.

9.1 Selecting variables

If you want to select specific variables, you would do the following:

ds.select(variables = ["var1", "var2"])

If you only want to select one variable, you can do this:

ds.select(variables = "var1")

9.2 Selecting years

If you want to select specific years, you can do the following:

ds.select(years = [2000, 2001])

Again, if you want a single year the following will work:

ds.select(years = 2000)

The select method allows partial matches for its arguments. So if we want to select the year 2000, the following will
work:

ds.select(year = 2000)

In this case we can also select a range. So the following will work:

ds.select(years = range(2000, 2010))

33

nctoolkit

9.3 Selecting months

You can select months in the same way as years. The following examples will all do the same thing:

ds.select(months = [1,2,3,4])
ds.select(months = range(1,5))
ds.select(mon = [1,2,3,4])

9.4 Selecting seasons

You can easily select seasons. For example if you wanted to select winter, you would do the following:

ds.select(season = "DJF")

9.5 Selecting timesteps

You can select specific timesteps from a dataset in a similar manner. For example if you wanted to select the first two
timesteps in a dataset the following two methods will work:

ds.select(time = [0,1])
ds.select(time = range(0,2))

9.6 Geographic subsetting

If you want to select a geographic subregion of a dataset, you can use crop. This method will select all data within a
specific longitude/latitude box. You just need to supply the minimum longitude and latitude required. In the example
below, a dataset is cropped with longitudes between -80 and 90 and latitudes between 50 and 80:

ds.crop(lon = [-80, 90], lat = [50, 80])

34 Chapter 9. Subsetting data

CHAPTER

TEN

MANIPULATING VARIABLES

10.1 Creating new variables

Variable creation in nctoolkit can be done using the assign method, which works in a similar way to the method
available in pandas.

The assign method works using lambda functions. Let’s say we have a dataset with a variable ‘var’ and we simply
want to add 10 to it and call the new variable ‘new’. We would do the following:

ds.assign(new = lambda x: x.var + 10)

If you are unfamilar with lambda functions, note that the x after lambda signifies that x represents the dataset in whatever
comes after ‘:’, which is the actual equation to evaluate. The x.var term is var from the dataset.

By default assign keeps the original variables in the dataset. However, we may only want the new variable or variables.
In that case you can use the drop argument:

ds.assign(new = lambda x: x.var+ 10, drop = True)

This results in only one variable.

Note that the assign method uses kwargs for the lambda functions, so drop can be positioned anywhere. So the
following will do the same thing

ds.assign(new = lambda x: x.var+ 10, drop = True)
ds.assign(drop = True, new = lambda x: x.var+ 10)

At present, assign requires that it is written on a single line. So avoid doing something like the following:

ds.assign(new = lambda x: x.var+ 10,
drop = True)

The assign method will evaluate the lambda functions sent to it for each dataset grid cell for each time step. So every
part of the lambda function must evaluate to a number. So the following will work:

k = 273.15
ds.assign(drop = True, sst_k = lambda x: x.sst + k)

However, if you set k to a string or anything other than a number it will throw an error. For example, this will throw an
error:

k = "273.15"
ds.assign(drop = True, sst_k = lambda x: x.sst + k)

35

nctoolkit

10.2 Applying mathematical functions to dataset variables

As part of your lambda function you can use a number of standard mathematical functions. These all have the same
names as those in numpy: abs, floor, ceil, sqrt, exp, log10, sin, cos, tan, arcsin, arccos and arctan.

For example if you wanted to calculate the ceiling of a variable you could do the following:

ds.assign(new = lambda x: ceil(x.old))

An example of using logs would be the following:

ds.assign(new = lambda x: log10(x.old+1))

10.3 Using spatial statistics

The assign method carries out its calculations in each time step, and you can access spatial statistics for each time step
when generating new variables. A series of functions are available that have the same names as nctoolkit methods for
spatial statistics: spatial_mean, spatial_max, spatial_min, spatial_sum, vertical_mean, vertical_max,
vertical_min, vertical_sum, zonal_mean, zonal_max, zonal_min and zonal_sum.

An example of the usefulness of these functions would be if you were working with global temperature data and
you wanted to map regions that are warmer than average. You could do this by working out the difference between
temperature in one location and the global mean:

ds.assign(temp_comp = lambda x: x.temperature - spatial_mean(x.temperature), drop = True)

You can also do comparisons. In the above case, we instead might simply want to identify regions that are hotter than
the global average. In that case we can simply do this:

ds.assign(temp_comp = lambda x: x.temperature > spatial_mean(x.temperature), drop = True)

Let’s say we wanted to map regions which are 3 degrees hotter than average. We could that as follows:

ds.assign(temp_comp = lambda x: x.temperature > spatial_mean(x.temperature + 3), drop =␣
→˓True)

or like this:

ds.assign(temp_comp = lambda x: x.temperature > (spatial_mean(x.temperature)+3), drop =␣
→˓True)

Logical operators work in the standard Python way. So if we had a dataset with a variable called ‘var’ and we wanted
to find cells with values between 1 and 10, we could do this:

ds.assign(one2ten = lambda x: x.var > 1 & x.var < 10)

You can process multiple variables at once using assign. Variables will be created in the order given, and variables
created by the first lambda function can be used by the next one, and so on. The simple example below shows how this
works. First we create a var1, which is temperature plus 1. Then var2, which is var1 plus 1. Finally, we calculate the
difference between var1 and var2, and this should be 1 everywhere:

ds.assign(var1 = lambda x: x.var + 1, var2 = lambda x: x.var1 + 1, diff = lambda x: x.
→˓var2 - x.var1)

36 Chapter 10. Manipulating variables

nctoolkit

10.4 Functions that work with nctoolkit variables

The following functions can be used on nctoolkit variables as part of lambda functions.

Function Description Example
abs Absolute value abs(x.sst)
ceiling Ceiling of variable ceiling(x.sst -1)
cell_area Area of grid-cell (m2) cell_area(x.var)
cos Trigonometric cosine of variable cos(x.var)
day Day of the month of the variable day(x.var)
exp Exponential of variable exp(x.sst)
floor Floor of variable floor(x.sst + 8.2)
hour Hour of the day of the variable hour(x.var)
isnan Is variable a missing value/NA? isnan(x.var)
latitude Latitude of the grid cell latitude(x.var)
level Vertical level of variable. level(x.var)
log Natural log of variable log10(x.sst + 1)
log10 Base log10 of variable log10(x.sst + 1)
longitude Longitude of the grid cell longitude(x.var)
month Month of the variable month(x.var)
sin Trigonometric sine of variable sin(x.var)
spatial_max Spatial max of variable at time-step spatial_max(x.var)
spatial_mean Spatial mean of variable at time-step spatial_mean(x.var)
spatial_min Spatial min of variable at time-step spatial_min(x.var)
spatial_sum Spatial sum of variable at time-step spatial_sum(x.var)
sqrt Square root of variable sqrt(x.sst + 273.15)
tan Trigonometric tangent of variable tan(x.var)
timestep Time step of variable. Using Python indexing. timestep(x.var)
year Year of the variable year(x.var)
zonal_max Zonal max of variable at time-step zonal_max(x.var)
zonal_mean Zonal mean of variable at time-step zonal_mean(x.var)
zonal_min Zonal min of variable at time-step zonal_min(x.var)
zonal_sum Zonal sum of variable at time-step zonal_sum(x.var)

10.5 Simple mathematical operations on variables

If you want to do simple operations like adding or subtracting numbers from the variables in datasets you can use the
add, subtract, divide and multiply methods. For example if you wanted to add 10 to every variable in a dataset,
you would do the following:

ds.add(10)

If you wanted to multiply everything by 10, you would do this:

ds.multiply(10)

These methods will also let you use other datasets or netCDF files. So, you could add the values in a dataset data2 to a
dataset called data1 as follows:

ds1.add(ds2)

10.4. Functions that work with nctoolkit variables 37

nctoolkit

Please note that this will require that the datasets are structured in a way that the operation makes sense. So each
dimension in the datasets will either have to be identical, with the exception of when one dataset has a single value for
a dimension. So for example if ds2 above has data covering only 1 timestep, but ds1 has multiple timesteps the data
from that single time step will be added to all timesteps in ds1. But if the time steps match, then the data from the first
time step in ds2 will be added to the data in the first time step in ds1, and the same will happen with the following time
steps.

10.6 Simple numerical comparisons

If you want to do something as simple as working out whether the values of the variables in a dataset are greater than
zero, you can use the compare method. This method accepts a simple comparison formula, which follows Python
conventions. For example, if you wanted to figure out if the values in a dataset were greater than zero, you would do
the following:

ds.compare(">0")

If you wanted to know if they were equal to zero you would do this:

ds.compare("==0")

38 Chapter 10. Manipulating variables

CHAPTER

ELEVEN

ADDING OR SUBTRACTING DATASETS

Often you might want to subtract datasets from each other. This is potentially made complicated as datasets can take
different forms. For example, you might want to subtract a dataset which contains annual means from a dataset that
contains monthly values. In this case you want to subtract the annual mean from the relevant month in each year. To
deal with this problem, nctoolkit offers the methods add, subtract, multiply and divide, which from nctoolkit
v0.4.0 onwards can automatically work out the relevant method required for the dataset given.

Let’s illustrate this using a dataset of monthly sea surface temperature from 1850 to the present day. In the snippet
below, we load the data into a dataset. Then we generate a second which is the annual mean temperature and subtract
it from the original dataset:

[1]: import nctoolkit as nc
ds1 = nc.open_data("sst.mon.mean.nc")
ds2 = nc.open_data("sst.mon.mean.nc")
ds2.tmean("year")
ds1.subtract(ds2)

nctoolkit is using Climate Data Operators version 1.9.10

Subtracting a yearly time series

You can see that nctoolkit has stated that it has subtracted a yearly time series.

If we wanted to subtract the monthly mean, we would do this:

[2]: import nctoolkit as nc
ds1 = nc.open_data("sst.mon.mean.nc")
ds2 = nc.open_data("sst.mon.mean.nc")
ds2.tmean("month")
ds1.subtract(ds2)

Subtracting a monthly time series

Similarly, if you want to subtract a dataset with only one time step, things will work as expected:

[3]: import nctoolkit as nc
ds1 = nc.open_data("sst.mon.mean.nc")
ds2 = nc.open_data("sst.mon.mean.nc")
ds2.tmean()
ds1.subtract(ds2)

Subtracting a single time step time series

Note: these methods require consistency between the datasets. For example, in the code below we are subtracting the
annual means from the monthly values, but we have removed the year 2000. So running this code will throw an error.

39

https://psl.noaa.gov/data/gridded/data.cobe2.html

nctoolkit

[]: import nctoolkit as nc
ds1 = nc.open_data("sst.mon.mean.nc")
ds2 = nc.open_data("sst.mon.mean.nc")
ds2.drop(year = 2000)
ds2.tmean("year")
ds1.subtract(ds2)

11.1 Automatic methods available

At present, the add, subtract divide and multiply methods will be automatically able to handle daily, monthly
and yearly dataset. At present, they will not be able to handle hourly datasets or anything finer.

However, it will automatically be able to deal add, subtract, divide or multiply files that either have single time
steps or have identical time steps. In this case time step comparisons are unambiguous.

40 Chapter 11. Adding or subtracting datasets

CHAPTER

TWELVE

MULTI-FILE DATASETS

nctoolkit is built to handle multi-file datasets easily and efficiently. Parallel processing of files, ensemble averaging and
merging are all easily done.

To create a multi-file dataset, you just need to supply a list of files to open_data. Alternatively, you can use wild cards.
The following will create a multi-file dataset with all of the files in the foo folder:

import nctoolkit as nc
ds = nc.open_data("foo/*.nc")

Standard nctoolkit methods can then be applied to each file within the ensemble. For example, if we wanted a temporal
mean of each file, we would do the following:

ds.tmean()

Note, to avoid any confusion: this operation will only apply to individual members of the multi-file dataset. We will
later discuss ensemble methods such as ensemble_mean, which let you calculate statistics across the ensemble.

12.1 Merging multi-file datasets

There are two ways to merge mult-file datasets, time-based and variable-based.

Merging by time is done as follows:

ds.merge("time")

This will join files together so that their times join up. It should be used when files have the same variables and grids,
but distinct times.

The second merging method is joining variables. In this case files should have the same time steps or one file should
have at most one time step. This is done as follows:

ds.merge("variable")

By default, nctoolkit uses variable-based merging.

41

nctoolkit

12.2 Speeding up multi-file processing

If you have access to multiple cores, it is very easy to ensure files within a multi-file dataset are processed in parallel.
Just set the number of cores to be used. In the following case, we set it to 6:

nc.options(6)

This results in files being processed simultaneously with 6 cores.

If you are working on multi-file datasets, it is almost always much faster to set the number of cores to a high number
and carry out operations on the files before merging them using merge and not the other way round.

12.3 Ensemble statistics

In some cases, you will want to calculate averages etc. across the multi-file dataset. For example, each file in a dataset
could be from a different climate model and you might simply the mean value across them. This is very easily done.
We can just calculate the ensemble mean as follows:

ds.ensemble_mean()

This will calculate the mean for each time step. For example, if you have an ensemble which is made of monthly
projections of temperature from 20 different climate models, ensemble_mean will calculate the monthly mean of
those 20 models.

Multiple ensemble methods are available: ensemble_mean, ensemble_percentile, ensemble_stdev,
ensemble_var, ensemble_max, ensemble_min, ensemble_range and ensemble_sum.

42 Chapter 12. Multi-file datasets

CHAPTER

THIRTEEN

PARALLEL PROCESSING

nctoolkit is written to enable rapid processing and analysis of netCDF files, and this includes the ability to process
in parallel. Two methods of parallel processing are available. First is the ability to carry out operations on multi-file
datasets in parallel. Second is the ability to define a processing chain in nctoolkit, and then use the multiprocessing
package to process files in parallel using that chain.

13.1 Parallel processing of multi-file datasets

If you have a multi-file dataset, processing the files within it in parallel is easy. All you need to is the following:

nc.options(cores = 6)

This will tell nctoolkit to process the files in multi-file datasets in parallel and to use 6 cores when doing so. You can,
of course, set the number of cores as high as you want. The only thing nctoolkit will do is limit it to the number of
cores on your machine.

13.2 Parallel processing using multiprocessing

A common task is taking a bunch of files in a folder, doing things to them, and then saving a modified version of each
file in a new folder. We want to be able to parallelize that, and we can using the multiprocessing package in the usual
way.

But first, we need to change the global settings:

import nctoolkit as nc
nc.options(parallel = True)

This tells nctoolkit that we are about to do something in parallel. This is critical because of the internal workings of
nctoolkit. Behind the scenes nctoolkit is constantly creating and deleting temporary files. It manages this process by
creating a safe-list, i.e. a list of files in use that should not be deleted. But if you are running in parallel, you are adding
to this list in parallel, and this can cause problems. Telling nctoolkit it will be run in parallel tells it to switch to using
a type of list that can be safely added to in parallel.

We can use multiprocessing to do the following: take all of the files in folder foo, do a bunch of things to them, then
save the results in a new folder:

We start with a function giving a processing chain. There are obviously different ways of doing this, but I like to use a
function that takes the input file and output file:

43

nctoolkit

def process_chain(infile, outfile):
ds = nc.open_data(ff)
ds.assign(tos = lambda x: x.sst + 273.15)
ds.tmean()
ds.to_nc(outfile)

We now want to loop through all of the files in a folder, apply the function to them and then save the results in a new
folder called new:

ensemble = nc.create_ensemble("../../data/ensemble")
import multiprocessing
pool = multiprocessing.Pool(3)
for ff in ensemble:

pool.apply_async(process_chain, [ff, ff.replace("ensemble", "new")])
pool.close()
pool.join()

The number 3 in this case signifies that 3 cores are to be used.

Please note that if you are working interactively or in a Jupyter notebook, it is best to reset parallel as follows once you
have stopped any parallel processing:

nc.options(parallel = False)

This is because of the effects of manually terminating commands on multiprocessing lists, which nctoolkit uses when
in parallel mode.

44 Chapter 13. Parallel processing

CHAPTER

FOURTEEN

EXAMPLES

This tutorial runs through a number of example work flows.

14.1 Global sea surface temperature since 1850

This example analyzes a global sea surface temperature dataset, covering the years since 1850. The data is available
from the National Oceanic and Atmospheric Administration (NOAA) here.

We are looking at global sea surface temperature since 1850, so an obvious question is how much the oceans have
warmed over this time period. We can use nctoolkit’s spatial_mean method to calculate this:

Once the file is downloaded, we should set it to ff:

[1]: import nctoolkit as nc
ff = "sst.mon.mean.nc"

nctoolkit is using Climate Data Operators version 1.9.10

[2]: ds = nc.open_data(ff)
ds.spatial_mean()
ds.plot()

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[2]: :DynamicMap [variable]
:Curve [time] (value)

We can see a clear temperature rise of about 1 degree Celcius. But this is monthly data, so a bit noisy. We can smooth
it out by taking an annual mean. In this case we send “year” to tmean to tell it to calculate the mean for each year:

45

https://psl.noaa.gov/data/gridded/data.cobe2.html

nctoolkit

[3]: ds = nc.open_data(ff)
ds.tmean(["year"])
ds.spatial_mean()
ds.plot("sst")

[3]: :DynamicMap [variable]
:Curve [time] (value)

That is getting better. But again, we possibly want a rolling average. We can use the rolling_meanmethod to calculate
the mean over every 20-year period:

[4]: ds = nc.open_data(ff)
ds.tmean(["year"])
ds.spatial_mean()
ds.rolling_mean(20)
ds.plot("sst")

[4]: :DynamicMap [variable]
:Curve [time] (value)

We’ll finish things off by tweaking this so that we can work out how much temperature has increased since the first 20
years in the time period. For this we can use the annual_anomaly method.

[5]: ds = nc.open_data(ff)
ds.annual_anomaly(baseline = [1850, 1869], window = 20)
ds.spatial_mean()
ds.plot("sst")

[5]: :DynamicMap [variable]
:Curve [time] (value)

14.2 More to come. . . .

46 Chapter 14. Examples

CHAPTER

FIFTEEN

RANDOM DATA HACKS

nctoolkit features a number of useful methods to tweak data.

15.1 Shifting time

Sometimes the times in datasets are not quite what we want, and we need some way to adjust time. An example of
this is when you are missing a year of data, so want to copy data from the prior year and use it. But first you would
need to shift the times in that year forward by a year. You can do this with the shift method. This let’s you shift time
forward by a specified number of hours, days, months or years. You just need to supply hours, days, months or years
as an argument. So, if you wanted to shift time backward by one year, you would do the following:

ds.shift(years = -1)

If you wanted to shift time forward by 12 hours, this would do it:

ds.shift(hours = 12)

Note: this method allows partial matches to the arguments, so you could use hour, day, month or year just as easily.

15.2 Adding cell areas to a dataset

You can add grid cell areas to a dataset as follows:

ds.cell_area()

By default, this will add the cell area (in square metres) to the dataset. If you want the dataset to only include cell areas
you need to set the join argument to False:

ds.cell_area(join = False)

Of course, this method will only if it is possible to calculate the areas the grid cells.

47

nctoolkit

15.3 Changing the format of the netCDF files in a dataset

Sometimes you will want to change the format of the files in a dataset. You can do this using the format method. This
let’s you set the format, with the following options:

• netCDF = “nc1”

• netCDF version 2 (64-bit offset) = “nc2”/”nc”

• netCDF4 (HDF5) = “nc4”

• netCDF4-classi = “nc4c”

• netCDF version 5 (64-bit data) = “nc5”

So, if you want to set the format to netCDF4, you would do the following:

ds.format("nc4")

15.4 Getting rid of dimensions with only one value

Sometimes you will have a dataset that has a dimension with only one value, and you might want to get rid of that
dimension. For example, you might only have one one timestep and keeping it may have no value. Getting rid of that
dimension can be done using the reduce_dims method. It works as follows:

ds.reduce_dims()

15.5 Removing leap days

If you want to remove a leap day from a dataset, just do the following:

ds.drop(month = 2, day = 29)

15.6 Renaming variables

If you want to rename variables, you can use the rename method. Just provide a dictionary where the keys are the
original variable names and the values are the new names. So if you wanted to rename a variable x to y, you would do
this:

ds.rename({"x":"y"})

48 Chapter 15. Random Data Hacks

CHAPTER

SIXTEEN

GLOBAL SETTINGS

nctoolkit let’s you set global settings using options.

The most important and recommended to update is to set evaluation to lazy. This can be done as follows:

nc.options(lazy = True)

This means that commands will only be evaluated when either request them to be or they need to be.

For example, in the code below the 3 specified commands will only be calculated after it is told to run. This cuts down
on IO, and can result in significant improvements in run time. At present lazy defaults to False, but this may change in
a future release of nctoolkit.

nc.options(lazy = True)
data.tmean()
data.crop(lat = [0,90])
data.spatial_mean()
data.run()

If you are working with ensembles, you may want to change the number of cores used for processing multiple files. For
example, you can process multiple files in parallel using 6 cores as follows. By default cores = 1. Most methods can
run in parallel when working with multi-file datasets.

nc.options(cores = 6)

By default nctoolkit uses the OS’s temporary directories when it needs to create temporary files. In most cases this is
optimal. Most of the time reading and writing to temporary folders is faster. However, in some cases this may not be
a good idea because you may not have enough space in the temporary folder. In this case you can change the directory
used for saving temporary files as follows:

nc.options(temp_dir = "/foo")

16.1 Setting global settings using a configuration file

You may want to set some global settings either permanently or on a project level. You can do this by setting up a
configruation file. This should be a plain text file called .nctoolkitrc or nctoolkitrc. It should be placed in one of two
locations: your working directory or your home directory. When nctoolkit is imported, it will look first in your working
directory and then in your home directory for a file called .nctoolkitrc or nctoolkitrc. It will then use the first it finds to
change the global settings from the defaults.

The structure of this file is straightforward. For example, if you wanted to set evaluation to lazy and the number of
cores used for processing multi-file datasets, you would the following in your configuration file:

49

nctoolkit

lazy : True

cores : 6

The files roughly follow Python dictionary syntax, with the setting and value separate by :. Note that unless the setting
is specified in the file, the defaults will be used. If you do not provide a configuration file, nctoolkit will use the default
settings.

50 Chapter 16. Global settings

CHAPTER

SEVENTEEN

BACKENDS

nctoolkit relies on Climate Data Operators (CDO) as its computational backend. This is a high-powered command line
tool for manipulating and analyzing climate model data. You can read more about CDO on their website.

nctoolkit is designed as a stand alone package and users will require no understanding of CDO to use it. However,
people with knowledge of CDO may want to use the cdo_command method to use CDO methods directly.

17.1 Using CDO commands

If you want to apply a CDO command in nctoolkit, all you need to do is remove the beginning and end, i.e. ‘cdo’ and
the file names.

So, a typical CDO command looks like this:

cdo yearmean infile.nc outfile.nc

If we wanted to use this in nctoolkit, we would just do this:

ds.cdo_command("yearmean")

If the CDO command is an ensemble method that takes multiple files as input and produces one, you will need to
specify that it is an ensemble method, as follows:

ds.cdo_command("ensmean", ensemble = True)

17.2 Using NCO commands

nctoolkit also allows you to apply NCO commands to datasets using the nco_commandmethod. You just need to remove
the two file names from the command you want to apply.

So, the following command:

ncks -v kd_490 -d lat,40.0,70.0 -d lon,-20.0,15.0 infile.nc outfile.nc

would become:

ds.nco_command("ncks -v kd_490 -d lat,40.0,70.0 -d lon,-20.0,15.0")

51

https://code.mpimet.mpg.de/projects/cdo/

nctoolkit

52 Chapter 17. Backends

CHAPTER

EIGHTEEN

CHEAT SHEET

A cheat sheet providing a quick 2-page overview of nctoolkit is available here.

53

https://github.com/pmlmodelling/nctoolkit/raw/master/cheatsheet/nctoolkit_cheatsheet.pdf

nctoolkit

54 Chapter 18. Cheat sheet

CHAPTER

NINETEEN

API REFERENCE

19.1 Session options

options(**kwargs) Define session options.

19.1.1 nctoolkit.options

nctoolkit.options(**kwargs)
Define session options. Set the options in the session. Available options are thread_safe and lazy. Set thread_safe
= True if hdf5 was built to be thread safe. Set lazy = True if you want methods to evaluate lazy by default. Set
cores = n, if you want nctoolkit to process the individual files in multi-file datasets in parallel. Note this only
applies to multi-file datasets and will not improve performance with single files. Set temp_dir = “/foo” if you
want to change the temporary directory used by nctoolkit to save temporary files.

Parameters **kwargs – Define options using key, value pairs.

Examples

If you wanted to process the files in multi-file datasets in parallel with 6 cores, do the following:

>>> import nctoolkit as nc
>>> nc.options(cores = 6)

If you want to set evaluation to always be lazy do the following:

>>> nc.options(lazy = True)

If you want nctoolkit to store temporary files in a specific directory, do this:

>>> nc.options(temp_dir = "/foo")

55

nctoolkit

19.2 Opening/copying data

open_data([x, checks]) Read netCDF data as a DataSet object
open_url([x, ftp_details, wait, file_stop]) Read netCDF data from a url as a DataSet object
open_thredds([x, wait, checks]) Read thredds data as a DataSet object
open_geotiff ([x]) Read geotiff and convert to nctoolkit dataset
from_xarray(ds) Convert an xarray dataset to an nctoolkit dataset This

will first save the xarray dataset as a temporary netCDF
file.

DataSet.copy(self) Make a deep copy of an DataSet object

19.2.1 nctoolkit.open_data

nctoolkit.open_data(x=[], checks=True, **kwargs)
Read netCDF data as a DataSet object

Parameters
• x (str or list) – A string or list of netCDF files or a single url. The function will check

the files exist. If x is not a list, but an iterable it will be converted to a list. If a *.nc style
wildcard is supplied, open_data will use all files available. By default an empty dataset is
created, ie. using open_data() will create an empty dataset that can then be expanded using
append.

• checks (boolean) – Do you want basic checks to ensure cdo can read files? Default to True

• **kwargs (kwargs) – Optional arguments for internal use by open_thredds and open_url.

Returns open_data
Return type nctoolkit.DataSet

Examples

If you want to open a single file as a dataset, do the following:

>>> import nctoolkit as nc
>>> ds = nc.open_data("example.nc")

If you want to open a list of files as a multi-file dataset, you would do something like this:

>>> import nctoolkit as nc
>>> ds = nc.open_data(["file1.nc", "file2.nc", "file3.nc"])

If you wanted to open all files in a directory “data” as a multi-file dataset, you can use a wildcard:

>>> import nctoolkit as nc
>>> ds = nc.open_data("data/*.nc")

56 Chapter 19. API Reference

nctoolkit

19.2.2 nctoolkit.open_url

nctoolkit.open_url(x=None, ftp_details=None, wait=None, file_stop=None)
Read netCDF data from a url as a DataSet object

Parameters
• x (str) – A string with a url. Prior to processing data will be downloaded to a temp folder.

• ftp_details (dict) – A dictionary giving the user name and password combination for
ftp downloads: {“user”:user, “password”:pass}

• wait (int) – Time to wait, in seconds, for data to download. A minimum of 3 attempts will
be made to download the data.

• file_stop (int) – Time limit, in minutes, for individual attempts at downloading data.
This is useful to get around download freezes.

Returns open_url
Return type nctoolkit.DataSet

Examples

If you want to open a file available over a url do the following:

>>> import nctoolkit as nc
>>> ds = nc.open_url("htttp:://foo.nc")

This will download the file as a temporary folder for use in the dataset.

19.2.3 nctoolkit.open_thredds

nctoolkit.open_thredds(x=None, wait=None, checks=False)
Read thredds data as a DataSet object

Parameters
• x (str or list) – A string or list of thredds urls, which must end with .nc.

• checks (boolean) – Do you want to check if data is available over thredds?

• wait (int) – Time to wait for thredds server to be checked. Limitless if not supplied.

Returns open_thredds
Return type nctoolkit.DataSet

Examples

If you want to open a file available over thredds or opendap, do the following:

>>> import nctoolkit as nc
>>> ds = nc.open_thredds("htttp:://foo.nc")

19.2. Opening/copying data 57

nctoolkit

19.2.4 nctoolkit.open_geotiff

nctoolkit.open_geotiff(x=[])
Read geotiff and convert to nctoolkit dataset

Parameters x (str or list) – A string or list of geotiff files or a single url. This requires rioxarray
to be installed.

Returns open_data
Return type nctoolkit.DataSet

19.2.5 nctoolkit.from_xarray

nctoolkit.from_xarray(ds)
Convert an xarray dataset to an nctoolkit dataset This will first save the xarray dataset as a temporary netCDF
file.

Parameters
• ds (xarray dataset) –

• --------------- –

• from_xarray (nctoolkit.DataSet) –

19.2.6 nctoolkit.DataSet.copy

DataSet.copy(self)
Make a deep copy of an DataSet object

19.3 Merging or analyzing multiple datasets

merge(*datasets[, match]) Merge datasets
cor_time([x, y]) Calculate the temporal correlation coefficient between

two datasets This will calculate the temporal correlation
coefficient, for each time step, between two datasets.

cor_space([x, y]) Calculate the spatial correlation coefficient between two
datasets This will calculate the spatial correlation coef-
ficient, for each time step, between two datasets.

19.3.1 nctoolkit.merge

nctoolkit.merge(*datasets, match=['day', 'year', 'month'])
Merge datasets

Parameters
• datasets (kwargs) – Datasets to merge.

• match (list) – Temporal matching criteria. This is a list which must be made up of a subset
of day, year, month. This checks that the datasets have compatible times. For example, if
you want to ensure the datasets have the same years, then use match = [“year”].

58 Chapter 19. API Reference

nctoolkit

19.3.2 nctoolkit.cor_time

nctoolkit.cor_time(x=None, y=None)
Calculate the temporal correlation coefficient between two datasets This will calculate the temporal correlation
coefficient, for each time step, between two datasets. The datasets must either have the same variables or only
have one variable.

Parameters
• x (dataset) – First dataset to use

• y (dataset) – Second dataset to use

19.3.3 nctoolkit.cor_space

nctoolkit.cor_space(x=None, y=None)
Calculate the spatial correlation coefficient between two datasets This will calculate the spatial correlation coef-
ficient, for each time step, between two datasets. The datasets must either have the same variables or only have
one variable.

Parameters
• x (dataset) – First dataset to use

• y (dataset) – Second dataset to use

19.4 Adding and removing files to a dataset

append

remove

19.4.1 nctoolkit.append

Functions

append(self[, x]) Add new file(s) to a dataset.
remove(self[, x]) Remove file(s) from a dataset

19.4.2 nctoolkit.remove

Functions

nc_remove(ff[, deep]) Method for removing netCDF files.

19.4. Adding and removing files to a dataset 59

nctoolkit

19.5 Accessing attributes

DataSet.variables List variables contained in a dataset
DataSet.contents Detailed list of variables contained in a dataset.
DataSet.times List times contained in a dataset
DataSet.years List years contained in a dataset
DataSet.months List months contained in a dataset
DataSet.levels List levels contained in a dataset
DataSet.size The size of an object This will print the number of files,

total size, and smallest and largest files in an DataSet
object.

DataSet.current The current file or files in the DataSet object
DataSet.history The history of operations on the DataSet
DataSet.start The starting file or files of the DataSet object
DataSet.calendar List calendars of dataset files
DataSet.ncformat List formats of files contained in a dataset

19.5.1 nctoolkit.DataSet.variables

property DataSet.variables
List variables contained in a dataset

19.5.2 nctoolkit.DataSet.contents

property DataSet.contents
Detailed list of variables contained in a dataset. This will only display the variables in the first file of an ensemble.

19.5.3 nctoolkit.DataSet.times

property DataSet.times
List times contained in a dataset

19.5.4 nctoolkit.DataSet.years

property DataSet.years
List years contained in a dataset

19.5.5 nctoolkit.DataSet.months

property DataSet.months
List months contained in a dataset

60 Chapter 19. API Reference

nctoolkit

19.5.6 nctoolkit.DataSet.levels

property DataSet.levels
List levels contained in a dataset

19.5.7 nctoolkit.DataSet.size

property DataSet.size
The size of an object This will print the number of files, total size, and smallest and largest files in an DataSet
object.

19.5.8 nctoolkit.DataSet.current

property DataSet.current
The current file or files in the DataSet object

19.5.9 nctoolkit.DataSet.history

property DataSet.history
The history of operations on the DataSet

19.5.10 nctoolkit.DataSet.start

property DataSet.start
The starting file or files of the DataSet object

19.5.11 nctoolkit.DataSet.calendar

property DataSet.calendar
List calendars of dataset files

19.5.12 nctoolkit.DataSet.ncformat

property DataSet.ncformat
List formats of files contained in a dataset

19.6 Plotting

DataSet.plot(self[, vars, autoscale, out])

19.6. Plotting 61

nctoolkit

19.6.1 nctoolkit.DataSet.plot

DataSet.plot(self, vars=None, autoscale=True, out=None, **kwargs)

19.7 Variable modification

DataSet.assign(self[, drop]) Create new variables Existing columns that are re-
assigned will be overwritten. :param drop: Set to True if
you want existing variables to be removed once the new
ones have been created. Defaults to False.

DataSet.rename(self, newnames) Rename variables in a dataset
DataSet.set_missing(self[, value]) Set the missing value for a single number or a range
DataSet.sum_all(self[, drop]) Calculate the sum of all variables for each time step

19.7.1 nctoolkit.DataSet.assign

DataSet.assign(self, drop=False, **kwargs)
Create new variables Existing columns that are re-assigned will be overwritten. :param drop: Set to True if you
want existing variables to be removed once the new ones have been created.

Defaults to False.

should evaluate to a numeric. New variables are calculated for each grid cell and time step.

Parameters **kwargs (dict of {str: callable}) – New variable names are keywords. All
terms in the equation given by the lamda function should evaluate to a numeric. New variables
are calculated for each grid cell and time step.

Notes

Operations are carried out in the order give. So if a new variable is created in the first argument, it can then be
used in following arguments.

19.7.2 nctoolkit.DataSet.rename

DataSet.rename(self, newnames)
Rename variables in a dataset

Parameters newnames (dict) – Dictionary with key-value pairs being original and new variable
names

62 Chapter 19. API Reference

nctoolkit

Examples

If you want to rename a variable x to y, do the following:

>>> ds.rename({"x":"y"})

19.7.3 nctoolkit.DataSet.set_missing

DataSet.set_missing(self, value=None)
Set the missing value for a single number or a range

Parameters value (2 variable list or int/float) – If int/float is provided, the missing
value will be set to that. If a list is provided, values between the two values (inclusive) of the list
are set to missing.

19.7.4 nctoolkit.DataSet.sum_all

DataSet.sum_all(self, drop=True)
Calculate the sum of all variables for each time step

Parameters drop (boolean) – Do you want to keep variables?

19.8 netCDF file attribute modification

DataSet.set_longnames(self[, name_dict]) Set the long names of variables
DataSet.set_units(self[, unit_dict]) Set the units for variables

19.8.1 nctoolkit.DataSet.set_longnames

DataSet.set_longnames(self, name_dict=None)
Set the long names of variables

Parameters name_dict (dict) – Dictionary with key, value pairs representing the variable names
and their long names

19.8.2 nctoolkit.DataSet.set_units

DataSet.set_units(self, unit_dict=None)
Set the units for variables

Parameters unit_dict (dict) – A dictionary where the key-value pairs are the variables and new
units respectively.

19.8. netCDF file attribute modification 63

nctoolkit

19.9 Vertical/level methods

DataSet.top(self) Extract the top/surface level from a dataset This extracts
the first vertical level from each file in a dataset.

DataSet.bottom(self) Extract the bottom level from a dataset This extracts the
bottom level from each netCDF file.

DataSet.vertical_interp(self[, levels]) Verticaly interpolate a dataset based on given vertical
levels This is calculated for each time step and grid cell

DataSet.vertical_mean(self[, thickness, . . .]) Calculate the depth-averaged mean for each variable
This is calculated for each time step and grid cell

DataSet.vertical_min(self) Calculate the vertical minimum of variable values This
is calculated for each time step and grid cell

DataSet.vertical_max(self) Calculate the vertical maximum of variable values This
is calculated for each time step and grid cell

DataSet.vertical_range(self) Calculate the vertical range of variable values This is cal-
culated for each time step and grid cell

DataSet.vertical_sum(self) Calculate the vertical sum of variable values This is cal-
culated for each time step and grid cell

DataSet.vertical_integration(self[, . . .]) Calculate the vertically integrated sum over the water
column This calculates the sum of the variable multi-
plied by the cell thickness

DataSet.vertical_cumsum(self) Calculate the vertical sum of variable values This is cal-
culated for each time step and grid cell

DataSet.invert_levels(self) Invert the levels of 3D variables This is calculated for
each time step and grid cell

DataSet.bottom_mask(self) Create a mask identifying the deepest cell without miss-
ing values.

19.9.1 nctoolkit.DataSet.top

DataSet.top(self)
Extract the top/surface level from a dataset This extracts the first vertical level from each file in a dataset.

Examples

If you wanted to extract the top vertical level of a dataset, do the following:

>>> ds.top()

This method is most useful for things like oceanic data, where this method will extract the sea surface.

64 Chapter 19. API Reference

nctoolkit

19.9.2 nctoolkit.DataSet.bottom

DataSet.bottom(self)
Extract the bottom level from a dataset This extracts the bottom level from each netCDF file. Please note that
for ensembles, it uses the first file to derive the index of the bottom level. Use bottom_mask for files when the
bottom cell in netCDF files do not represent the actual bottom.

Examples

If you wanted to extract the bottom vertical level of a dataset, do the following:

>>> ds.bottom()

This method is most useful for things like oceanic model data, where the bottom cell corresponds to the bottom
of the ocean.

19.9.3 nctoolkit.DataSet.vertical_interp

DataSet.vertical_interp(self, levels=None)
Verticaly interpolate a dataset based on given vertical levels This is calculated for each time step and grid cell

Parameters levels (list, int or str) – list of vertical levels, for example depths for an ocean
model, to vertically interpolate to. These must be floats or ints.

Examples

If you wanted to vertically interpolate a dataset to 5 and 10 metres, you would do the following:

>>> ds.vertical_interp([5,10])

This method is most useful for things like oceanic data, where you need to interpolate to certain depth levels. It
will require that vertical levels are the same in every grid cell.

19.9.4 nctoolkit.DataSet.vertical_mean

DataSet.vertical_mean(self, thickness=None, depth_range=None)
Calculate the depth-averaged mean for each variable This is calculated for each time step and grid cell

thickness: str or Dataset Only use when vertical levels vary in space One of: a variable, in the dataset, which
contains the variable thicknesses; a .nc file which contains the thicknesses; or a Dataset that contains the
thicknesses. Note: the .nc file or Dataset must only contain one variable.

depth_range: list Only use when vertical levels vary in space Set a depth range if desired. Should be of the
form [min_depth, max_depth].

19.9. Vertical/level methods 65

nctoolkit

Examples

If you wanted to vertical mean of every variable in a dataset, you would do this:

>>> ds.vertical_mean()

This method will calculate the vertical mean weighted by the thickness of each cell. Note that if cell thickness
cannot be derived it will just average the values in each vertical cell.

19.9.5 nctoolkit.DataSet.vertical_min

DataSet.vertical_min(self)
Calculate the vertical minimum of variable values This is calculated for each time step and grid cell

Examples

If you wanted to vertical minimum of every variable in a dataset, you would do this:

>>> ds.vertical_min()

19.9.6 nctoolkit.DataSet.vertical_max

DataSet.vertical_max(self)
Calculate the vertical maximum of variable values This is calculated for each time step and grid cell

Examples

If you wanted to vertical maximum of every variable in a dataset, you would do this:

>>> ds.vertical_max()

19.9.7 nctoolkit.DataSet.vertical_range

DataSet.vertical_range(self)
Calculate the vertical range of variable values This is calculated for each time step and grid cell

Examples

If you wanted to range of values across all vertical levels of every variable in a dataset, you would do this:

>>> ds.vertical_range()

66 Chapter 19. API Reference

nctoolkit

19.9.8 nctoolkit.DataSet.vertical_sum

DataSet.vertical_sum(self)
Calculate the vertical sum of variable values This is calculated for each time step and grid cell

Examples

If you wanted to sum of values across all vertical levels of every variable in a dataset, you would do this:

>>> ds.vertical_sum()

19.9.9 nctoolkit.DataSet.vertical_integration

DataSet.vertical_integration(self, thickness=None, depth_range=None)
Calculate the vertically integrated sum over the water column This calculates the sum of the variable multiplied
by the cell thickness

Parameters
• thickness (str or Dataset) – One of: a variable, in the dataset, which contains the

variable thicknesses; a .nc file which contains the thicknesses; or a Dataset that contains the
thicknesses. Note: the .nc file or Dataset must only contain one variable.

• depth_range (list) – Set a depth range if desired. Should be of the form [min_depth,
max_depth].

Examples

If you wanted to sum of values across all vertical levels of every variable in a dataset, you would do this:

>>> ds.vertical_sum()

19.9.10 nctoolkit.DataSet.vertical_cumsum

DataSet.vertical_cumsum(self)
Calculate the vertical sum of variable values This is calculated for each time step and grid cell

Examples

If you wanted to calculate the cumulative sum of values across all vertical levels of every variable in a dataset,
you would do this:

>>> ds.vertical_sum()

The cumulative sum will be calculated from the first to the last vertical level. For example, in oceanic data it
would start at the sea surface.

19.9. Vertical/level methods 67

nctoolkit

19.9.11 nctoolkit.DataSet.invert_levels

DataSet.invert_levels(self)
Invert the levels of 3D variables This is calculated for each time step and grid cell

Examples

If you wanted to invert the vertical levels, you would do this:

>>> ds.invert_levels()

19.9.12 nctoolkit.DataSet.bottom_mask

DataSet.bottom_mask(self)
Create a mask identifying the deepest cell without missing values. This converts a dataset to a mask identifying
which cell represents the bottom, for example the seabed. 1 identifies the deepest cell with non-missing values.
Everything else is 0, or missing. At present this method only uses the first available variable from netCDF files,
so it may not be suitable for all data

19.10 Rolling methods

DataSet.rolling_mean(self[, window]) Calculate a rolling mean based on a window
DataSet.rolling_min(self[, window]) Calculate a rolling minimum based on a window
DataSet.rolling_max(self[, window]) Calculate a rolling maximum based on a window
DataSet.rolling_sum(self[, window]) Calculate a rolling sum based on a window
DataSet.rolling_range(self[, window]) Calculate a rolling range based on a window

19.10.1 nctoolkit.DataSet.rolling_mean

DataSet.rolling_mean(self, window=None)
Calculate a rolling mean based on a window

Parameters = int (window) – The size of the window for the calculation of the rolling mean

68 Chapter 19. API Reference

nctoolkit

Examples

If you wanted to calculate a rolling mean with the mean calculated over every 10 time steps, do the following:

>>> ds.rolling_mean(10)

19.10.2 nctoolkit.DataSet.rolling_min

DataSet.rolling_min(self, window=None)
Calculate a rolling minimum based on a window

Parameters = int (window) – The size of the window for the calculation of the rolling minimum

Examples

If you wanted to calculate a rolling minimum with the minimum calculated over every 10 time steps, do the
following:

>>> ds.rolling_min(10)

19.10.3 nctoolkit.DataSet.rolling_max

DataSet.rolling_max(self, window=None)
Calculate a rolling maximum based on a window

Parameters = int (window) – The size of the window for the calculation of the rolling maximum

Examples

If you wanted to calculate a rolling maximum with the maximum calculated over every 10 time steps, do the
following:

>>> ds.rolling_max(10)

19.10.4 nctoolkit.DataSet.rolling_sum

DataSet.rolling_sum(self, window=None)
Calculate a rolling sum based on a window

Parameters = int (window) – The size of the window for the calculation of the rolling sum

19.10. Rolling methods 69

nctoolkit

Examples

If you wanted to calculate a rolling sum with the sum calculated over every 10 time steps, do the following:

>>> ds.rolling_sum(10)

19.10.5 nctoolkit.DataSet.rolling_range

DataSet.rolling_range(self, window=None)
Calculate a rolling range based on a window

Parameters = int (window) – The size of the window for the calculation of the rolling range

Examples

If you wanted to calculate a rolling range with the range calculated over every 10 time steps, do the following:

>>> ds.rolling_range(10)

19.11 Evaluation setting

DataSet.run(self) Run all stored commands in a dataset

19.11.1 nctoolkit.DataSet.run

DataSet.run(self)
Run all stored commands in a dataset

Examples

If evaluation is lazy and you need to evaluate commands on a dataset, do the following:

>>> ds.run()

19.12 Cleaning functions

70 Chapter 19. API Reference

nctoolkit

19.13 Ensemble creation

create_ensemble([path, recursive]) Generate an ensemble

19.13.1 nctoolkit.create_ensemble

nctoolkit.create_ensemble(path='', recursive=True)
Generate an ensemble

Parameters
• path (str) – The directory to search for netCDF files

• recursive (boolean) – True/False depending on whether you want to search the path re-
cursively. Defaults to True.

Returns A list of files

Return type list

Examples

If you wanted to recursively find all netCDF files available in a directory “data”, you would do this:

>>> import nctoolkit as nc
>>> nc.create_ensemble("data")

If you wanted to find the files in that directory and ignore subdirectories, you would instead do this:

>>> nc.create_ensemble("data", recursive = False)

19.14 Arithemetic methods

DataSet.abs(self) Method to get the absolute value of variables
DataSet.add(self[, x, var]) Add to a dataset This will add a constant, another dataset

or a netCDF file to the dataset.
DataSet.assign(self[, drop]) Create new variables Existing columns that are re-

assigned will be overwritten. :param drop: Set to True if
you want existing variables to be removed once the new
ones have been created. Defaults to False.

DataSet.exp(self) Method to get the exponential of variables
DataSet.log(self) Method to get the natural log of variables
DataSet.log10(self) Method to get the base 10 log of variables

continues on next page

19.14. Arithemetic methods 71

nctoolkit

Table 16 – continued from previous page
DataSet.multiply(self[, x, var]) Multiply a dataset This will multiply a dataset by a con-

stant, another dataset or a netCDF file. :param x: An
int, float, single file dataset or netCDF file to multiply
the dataset by. If multiplying by a dataset or single file
there must only be a single variable in it, unless var is
supplied. The grids must be the same. :type x: int, float,
DataSet or netCDF file :param var: A variable in the x
to multiply the dataset by :type var: str.

DataSet.power(self[, x]) Powers of variables in dataset :param x: An int or float
to take the variables to the power of :type x: int, float

DataSet.sqrt(self) Method to get the square root of variables
DataSet.square(self) Method to get the square of variables
DataSet.subtract(self[, x, var]) Subtract from a dataset This will subtract a constant, an-

other dataset or a netCDF file from the dataset. :param
x: An int, float, single file dataset or netCDF file to sub-
tract from the dataset. If a dataset or netCDF is supplied
this must only have one variable, unless var is provided.
The grids must be the same. :type x: int, float, DataSet
or netCDF file :param var: A variable in the x to use for
the operation :type var: str.

DataSet.divide(self[, x, var]) Divide the data This will divide the dataset by a constant,
another dataset or a netCDF file. :param x: An int, float,
single file dataset or netCDF file to divide the dataset
by. If a dataset or netCDF file is supplied, this must have
only one variable, unless var is provided. The grids must
be the same. :type x: int, float, DataSet or netCDF file
:param var: A variable in the x to use for the operation
:type var: str.

19.14.1 nctoolkit.DataSet.abs

DataSet.abs(self)
Method to get the absolute value of variables

Examples

If you wanted to get the absolute value of each variable, you just need do this:

>>> ds.abs()

19.14.2 nctoolkit.DataSet.add

DataSet.add(self, x=None, var=None)
Add to a dataset This will add a constant, another dataset or a netCDF file to the dataset. nctoolkit will automat-
ically determine the appropriate comparison required.

Parameters
x: int, float, DataSet or netCDF file An int, float, single file dataset or netCDF file to add to

the dataset. If a dataset or netCDF file is supplied, this must have only one variable, unless
var is provided. The grids must be the same.

72 Chapter 19. API Reference

nctoolkit

var: str A variable in the x to use for the operation

Examples

If you wanted to add 10 to all variables in a dataset, you would do the following:

>>> ds.add(10)

To add the values in a dataset ds2 from a dataset ds1, you would do the following:

>>> ds1.add(ds2)

Grids in the datasets must match. Addition will occur in matching timesteps in ds1 and ds2. If there is only 1
timestep in ds2, then the data from that timestep will be added to the data in all ds1 time steps.

Adding the data from another netCDF file will work in the same way:

>>> ds1.add("example.nc")

19.14.3 nctoolkit.DataSet.exp

DataSet.exp(self)
Method to get the exponential of variables

Examples

If you wanted to calculate the exponential of a variable, you just need to do this:

>>> ds.exp(0.5)

19.14.4 nctoolkit.DataSet.log

DataSet.log(self)
Method to get the natural log of variables

Examples

If you wanted to calculate the natural log of each variable, you just need to do this:

>>> ds.log()

19.14. Arithemetic methods 73

nctoolkit

19.14.5 nctoolkit.DataSet.log10

DataSet.log10(self)
Method to get the base 10 log of variables

Examples

If you wanted to calculate the base 10 log of each variable, you just need to do this:

>>> ds.log10()

19.14.6 nctoolkit.DataSet.multiply

DataSet.multiply(self, x=None, var=None)
Multiply a dataset This will multiply a dataset by a constant, another dataset or a netCDF file. :param x: An int,
float, single file dataset or netCDF file to multiply the dataset by.

If multiplying by a dataset or single file there must only be a single variable in it, unless var is supplied.
The grids must be the same.

Parameters var (str) – A variable in the x to multiply the dataset by

Examples

If you wanted to multiply variables in a dataset by 10, you would do the following:

>>> ds.multiply(10)

To multiply the values in a dataset by the values of variables in dataset ds2, you would do the following:

>>> ds1.multiply(ds2)

Grids in the datasets must match. Multiplication will occur in matching timesteps in ds1 and ds2. If there is only
1 timestep in ds2, then the data from that timestep in ds2 will multiply the data in all timesteps in ds1.

Multiplying a dataset by the data from another netCDF file will work in the same way:

>>> ds.multiply("example.nc")

19.14.7 nctoolkit.DataSet.power

DataSet.power(self, x=None)
Powers of variables in dataset :param x: An int or float to take the variables to the power of :type x: int, float

74 Chapter 19. API Reference

nctoolkit

Examples

If you wanted to take each variable to the power of 0.5 you would do this:

>>> ds.power(0.5)

19.14.8 nctoolkit.DataSet.sqrt

DataSet.sqrt(self)
Method to get the square root of variables

Examples

If you wanted to calculate the square root of each variable, you just need to do this:

>>> ds.sqrt()

19.14.9 nctoolkit.DataSet.square

DataSet.square(self)
Method to get the square of variables

Examples

If you wanted to calculate the square of each variable, you just need to do this:

>>> ds.power()

19.14.10 nctoolkit.DataSet.subtract

DataSet.subtract(self, x=None, var=None)
Subtract from a dataset This will subtract a constant, another dataset or a netCDF file from the dataset. :param
x: An int, float, single file dataset or netCDF file to subtract from the dataset.

If a dataset or netCDF is supplied this must only have one variable, unless var is provided. The grids
must be the same.

Parameters var (str) – A variable in the x to use for the operation

19.14. Arithemetic methods 75

nctoolkit

Examples

If you wanted to subtract 10 from all variables in a dataset, you would do the following:

>>> ds.subtract(10)

To substract the values in a dataset ds2 from those in a dataset ds1, you would do the following:

>>> ds1.subtract(ds2)

Grids in the datasets must match. Division will occur in matching timesteps in ds1 and ds2 if there are matching
timesteps. If there is only 1 timestep in ds2, then the data from that timestep in ds2 will be subtracted from the
data in all timesteps in ds1.

Subtracting of the data from another netCDF file will work in the same way:

>>> ds1.subtract("example.nc")

19.14.11 nctoolkit.DataSet.divide

DataSet.divide(self, x=None, var=None)
Divide the data This will divide the dataset by a constant, another dataset or a netCDF file. :param x: An int,
float, single file dataset or netCDF file to divide the dataset by.

If a dataset or netCDF file is supplied, this must have only one variable, unless var is provided. The
grids must be the same.

Parameters var (str) – A variable in the x to use for the operation

Examples

If you wanted to dividie all variables in a dataset by 20, you would do the following:

>>> ds.divide(10)

To divide values in a dataset by those in the dataset ds2 from a dataset ds1, you would do the following:

>>> ds1.divide(ds2)

Grids in the datasets must match. Division will occur in matching timesteps in ds1 and ds2. If there is only 1
timestep in ds2, then the data from that timestep in ds2 will divided the data in all ds1 time steps.

Adding the data from another netCDF file will work in the same way:

>>> ds.divide("example.nc")

76 Chapter 19. API Reference

nctoolkit

19.15 Ensemble statistics

DataSet.ensemble_mean(self[, nco, ignore_time]) Calculate an ensemble mean
DataSet.ensemble_min(self[, nco, ignore_time]) Calculate an ensemble min
DataSet.ensemble_max(self[, nco, ignore_time]) Calculate an ensemble maximum
DataSet.ensemble_percentile(self[, p]) Calculate an ensemble percentile This will calculate the

percentles for each time step in the files.
DataSet.ensemble_range(self) Calculate an ensemble range The range is calculated for

each time step; for example, if each file in the ensemble
has 12 months of data the statistic will be calculated for
each month.

DataSet.ensemble_stdev(self) Calculate an ensemble standard deviation
DataSet.ensemble_sum(self) Calculate an ensemble sum The sum is calculated for

each time step; for example, if each file in the ensemble
has 12 months of data the statistic will be calculated for
each month.

DataSet.ensemble_var(self) Calculate an ensemble variance

19.15.1 nctoolkit.DataSet.ensemble_mean

DataSet.ensemble_mean(self, nco=False, ignore_time=False)
Calculate an ensemble mean

Parameters
• nco (boolean) – Do you want to use NCO for the calculation? Default is False, i.e. CDO

is used. Modify default if run time is an issue.

• ignore_time (boolean) – If True the mean is calculated over all time steps. If False, the
ensemble mean is calculated for each time steps; for example, if the ensemble is made up of
monthly files the mean for each month will be calculated.

19.15.2 nctoolkit.DataSet.ensemble_min

DataSet.ensemble_min(self, nco=False, ignore_time=False)
Calculate an ensemble min

Parameters
• nco (boolean) – Do you want to use NCO for the calculation? Default is False, i.e. CDO

is used. Modify default if run time is an issue.

• ignore_time (boolean) – If True the min is calculated over all time steps. If False, the
ensemble min is calculated for each time steps; for example, if the ensemble is made up of
monthly files the min for each month will be calculated.

19.15. Ensemble statistics 77

nctoolkit

19.15.3 nctoolkit.DataSet.ensemble_max

DataSet.ensemble_max(self, nco=False, ignore_time=False)
Calculate an ensemble maximum

Parameters
• nco (boolean) – Do you want to use NCO for the calculation? Default is False, i.e. CDO

is used. Modify default if run time is an issue.

• ignore_time (boolean) – If True the max is calculated over all time steps. If False, the
ensemble max is calculated for each time steps; for example, if the ensemble is made up of
monthly files the max for each month will be calculated.

19.15.4 nctoolkit.DataSet.ensemble_percentile

DataSet.ensemble_percentile(self, p=None)
Calculate an ensemble percentile This will calculate the percentles for each time step in the files. For example,
if you had an ensemble of files where each file included 12 months of data, it would calculate the percentile for
each month.

Parameters p (float or int) – percentile to calculate. 0<=p<=100.

19.15.5 nctoolkit.DataSet.ensemble_range

DataSet.ensemble_range(self)
Calculate an ensemble range The range is calculated for each time step; for example, if each file in the ensemble
has 12 months of data the statistic will be calculated for each month.

19.15.6 nctoolkit.DataSet.ensemble_stdev

DataSet.ensemble_stdev(self)
Calculate an ensemble standard deviation

The ensemble standard deviation is calculated for each time steps; for example, if the ensemble is made up of
monthly files the standard deviation for each month will be calculated.

19.15.7 nctoolkit.DataSet.ensemble_sum

DataSet.ensemble_sum(self)
Calculate an ensemble sum The sum is calculated for each time step; for example, if each file in the ensemble
has 12 months of data the statistic will be calculated for each month.

78 Chapter 19. API Reference

nctoolkit

19.15.8 nctoolkit.DataSet.ensemble_var

DataSet.ensemble_var(self)
Calculate an ensemble variance

The ensemble variance is calculated for each time steps; for example, if the ensemble is made up of monthly files
the standard deviation for each month will be calculated.

19.16 Subsetting operations

DataSet.crop(self[, lon, lat, nco, nco_vars]) Crop to a rectangular longitude and latitude box
DataSet.select(self, **kwargs) A method for subsetting datasets to specific variables,

years, longitudes etc.
DataSet.drop(self, **kwargs) Remove variables This will remove stated variables from

files in the dataset.

19.16.1 nctoolkit.DataSet.crop

DataSet.crop(self, lon=[- 180, 180], lat=[- 90, 90], nco=False, nco_vars=None)
Crop to a rectangular longitude and latitude box

Parameters
• lon (list) – The longitude range to select. This must be two variables, between -180 and

180 when nco = False.

• lat (list) – The latitude range to select. This must be two variables, between -90 and 90
when nco = False.

• nco (boolean) – Do you want this to use NCO for cropping? Defaults to False, and uses
CDO. Set to True if you want to call NCO. NCO is typically better at handling very large
horizontal grids.

• nco_vars (str or list) – If using NCO, the variables you want to select

Examples

If you wanted to crop a dataset to longitudes between -40 and 30 and latitudes between -10 and 40, you would
do the following:

>>> ds.crop(lon = [-40, 30], lat = [-10, 40])

If you wanted to select only the northern hemisphere, the following will work:

>>> ds.crop(lat = [0, 90])

19.16. Subsetting operations 79

nctoolkit

19.16.2 nctoolkit.DataSet.select

DataSet.select(self, **kwargs)
A method for subsetting datasets to specific variables, years, longitudes etc. Operations are applied in the order
supplied.

Parameters *kwargs – Possible arguments: variables, years, months, seasons, timesteps, lon, lat

Note: this uses partial matches. So year, month, var etc. will also work

Each kwarg works as follows:

variables [str or list] A variable or list of variables to select. This method will accept wild cards. So using ‘var*’
would select all variables beginning with ‘var’.

seasons [str] Seasons to select. One of “DJF”, “MAM”, “JJA”, “SON”.

days [list, range or int] Days(s) to select.

months [list, range or int] Month(s) to select.

years [list,range or int] Years(s) to select. These should be integers

range [list] List of the form [date_min, date_max], where dates must be datetime objects or strings of the
form “DD/MM/YYYY” or “DD-MM-YYYY”. Times selected will be on or after date_min and before
date_max.

timesteps [list or int] time step(s) to select. For example, if you wanted the first time step set times=0.

Examples

If you want to select a single variable do the following:

>>> ds.select(variable = "var")

If you want to select a list of variables, do this:

>>> ds.select(variable = ["var1", "var2"])

If you want to select data for January, do the following:

>>> ds.select(month = 1)

If you want to select a range of months, do the following:

>>> ds.select(months = range(1, 7))

If you want to select a range of years, for example the 2010s, do the following:

>>> ds.select(years = range(2010, 2020))

If you want to select the first two timesteps in a dataset, do the following:

>>> ds.select(timesteps = [0,1])

80 Chapter 19. API Reference

nctoolkit

19.16.3 nctoolkit.DataSet.drop

DataSet.drop(self, **kwargs)
Remove variables This will remove stated variables from files in the dataset.

Parameters
• *kwargs – Possible arguments: var, year, month, day

Note: this uses partial matches. So years, month, variable etc. will also work

• kwarg works as follows (Each) –

• var (str or list) – A variable or list of variables to select. This method will accept wild
cards. So using ‘var*’ would select all variables beginning with ‘var’.

• day (list, range or int) – Day(s) to drop.

• month (list, range or int) – Month(s) to drop.

• year (list, range or int) – Year(s) to drop.

• time (list, range or int) – Time steps to to drop. This can include negative indices.

Examples

If you wanted to remove a single variable ‘var1’ from a dataset data, you would do the following:

>>> ds.drop(variable = 'var')

If you wanted to remove a list of variables, you would do the following:

>>> ds.drop(variable = ['var1', 'var2', 'var2'])

If you wanted to remove the 29th Feburary you would do the following:

>>> ds.drop(month = 2, day = 29)

19.17 Time-based methods

DataSet.set_date(self[, year, month, day, . . .]) Set the date in a dataset You should only do this if you
have to fix/change a dataset with a single, not multiple
dates.

DataSet.shift(self, **kwargs) Shift method.

19.17. Time-based methods 81

nctoolkit

19.17.1 nctoolkit.DataSet.set_date

DataSet.set_date(self, year=None, month=None, day=None, base_year=1900)
Set the date in a dataset You should only do this if you have to fix/change a dataset with a single, not multiple
dates.

Parameters
• year (int) – The year

• month (int) – The month

• day (int) – The day

• base_year (int) – The base year for time creation in the netCDF. Defaults to 1900.

19.17.2 nctoolkit.DataSet.shift

DataSet.shift(self, **kwargs)
Shift method. A wrapper for shift_days, shift_hours Operations are applied in the order supplied.

Parameters *kwargs – hours maps to shift_hours days maps to shift_days months maps to
shift_months years maps to shift_years

Note: this uses partial matches. So hour, day, month, year will also work.

Examples

If you wanted to shift all times back 1 hour, you would do the following:

>>> ds.shift(hours = -1)

If you wanted to shift all times forward 2 days, you would do the following:

>>> ds.shift(days = 2)

If you wanted to shift all times forward 6 months, you would do the following:

>>> ds.shift(months = 6)

If you wanted to shift all times forward 1 year, you would do the following:

>>> ds.shift(years = 1)

This method will allow partial matches in arguments. So the following will do the same thing:

>>> ds.shift(year = 2)

>>> ds.shift(years = 2)

82 Chapter 19. API Reference

nctoolkit

19.18 Interpolation and resampling methods

DataSet.regrid(self[, grid, method, recycle]) Regrid a dataset to a target grid
DataSet.to_latlon(self[, lon, lat, res, . . .]) Regrid a dataset to a regular latlon grid
DataSet.resample_grid(self[, factor]) Resample the horizontal grid of a dataset
DataSet.time_interp(self[, start, end, . . .]) Temporally interpolate variables based on date range and

time resolution
DataSet.timestep_interp(self[, steps]) Temporally interpolate a dataset to given number of time

steps between existing time steps
DataSet.fill_na(self[, n]) Fill missing values with a distance-weighted average.
DataSet.box_mean(self[, x, y]) Calculate the grid box mean for all variables This is per-

formed for each time step.
DataSet.box_max(self[, x, y]) Calculate the grid box max for all variables This is per-

formed for each time step.
DataSet.box_min(self[, x, y]) Calculate the grid box min for all variables This is per-

formed for each time step.
DataSet.box_sum(self[, x, y]) Calculate the grid box sum for all variables This is per-

formed for each time step.
DataSet.box_range(self[, x, y]) Calculate the grid box range for all variables This is per-

formed for each time step.

19.18.1 nctoolkit.DataSet.regrid

DataSet.regrid(self, grid=None, method='bil', recycle=False)
Regrid a dataset to a target grid

Parameters
• grid (nctoolkit.DataSet, pandas data frame or netCDF file) – The grid to

remap to

• method (str) – Remapping method. Defaults to “bil”. Methods available are: bilinear -
“bil”; nearest neighbour - “nn” - “nearest neighbour” bicubic interpolation - “bic” Distance-
weighted average - “dis” First order conservative remapping - “con” Second order conserva-
tive remapping - “con2” Large area fraction remapping - “laf”

19.18.2 nctoolkit.DataSet.to_latlon

DataSet.to_latlon(self, lon=None, lat=None, res=None, method='bil', recycle=False)
Regrid a dataset to a regular latlon grid

Parameters
• lon (list) – 2 element list giving minimum and maximum longitude of target grid

• lat (list) – 2 element list giving minimum and maximum latitude of target grid

• res (float, int or list) – If float or int given, this will be the horizontal and vertical
resolution of the target grid. If 2 element list is given, the first element is the longitudinal
resolution and the second is the latitudinal resolution.

• method (str) – Remapping method. Defaults to “bil”. Methods available are: bilinear -
“bil”; nearest neighbour - “nn” - “nearest neighbour” bicubic interpolation - “bic” Distance-

19.18. Interpolation and resampling methods 83

nctoolkit

weighted average - “dis” First order conservative remapping - “con” Second order conserva-
tive remapping - “con2” Large area fraction remapping - “laf”

• recycle (bool) – Do you want the grid and weights to be available for recycling and use in
regrid? Defaults to False

19.18.3 nctoolkit.DataSet.resample_grid

DataSet.resample_grid(self, factor=None)
Resample the horizontal grid of a dataset

Parameters factor (int) – The resampling factor. Must be a positive integer. No interpolation
occurs. Example: factor of 2 will sample every other grid cell

Examples

If you wanted to select every other grid cell, you could do the following:

>>> ds.resample_grid(2)

19.18.4 nctoolkit.DataSet.time_interp

DataSet.time_interp(self, start=None, end=None, resolution='monthly')
Temporally interpolate variables based on date range and time resolution

Parameters
• start (str) – Start date for interpolation. Needs to be of the form YYYY/MM/DD or

YYYY-MM-DD.

• end (str) – End date for interpolation. Needs to be of the form YYYY/MM/DD or YYYY-
MM-DD. If end is not given interpolation will be to the final available time in the dataset.

• resolution (str) – Time steps used for interpolation. Needs to be “daily”, “weekly”,
“monthly” or “yearly”. Defaults to monthly.

19.18.5 nctoolkit.DataSet.timestep_interp

DataSet.timestep_interp(self, steps=None)
Temporally interpolate a dataset to given number of time steps between existing time steps

Parameters steps (int) – Number of time steps to interpolate between existing time steps. For
example, if you wanted to go from daily to hourly data you would set steps=24.

84 Chapter 19. API Reference

nctoolkit

19.18.6 nctoolkit.DataSet.fill_na

DataSet.fill_na(self, n=1)
Fill missing values with a distance-weighted average. This carries out infilling for each time step and vertical
level. :param n: Number of nearest neighbours to use. Defaults to 1. To :type n: int

19.18.7 nctoolkit.DataSet.box_mean

DataSet.box_mean(self, x=1, y=1)
Calculate the grid box mean for all variables This is performed for each time step.

Parameters
• x (int) – Number of boxes in the x, e.g. east-west direction

• y (int or float) – Number of boxes in the y, e.g. north-south direction

19.18.8 nctoolkit.DataSet.box_max

DataSet.box_max(self, x=1, y=1)
Calculate the grid box max for all variables This is performed for each time step.

Parameters
• x (int) – Number of boxes in the x, e.g. east-west direction

• y (int or float) – Number of boxes in the y, e.g. north-south direction

19.18.9 nctoolkit.DataSet.box_min

DataSet.box_min(self, x=1, y=1)
Calculate the grid box min for all variables This is performed for each time step.

Parameters
• x (int) – Number of boxes in the x, e.g. east-west direction

• y (int or float) – Number of boxes in the y, e.g. north-south direction

19.18.10 nctoolkit.DataSet.box_sum

DataSet.box_sum(self, x=1, y=1)
Calculate the grid box sum for all variables This is performed for each time step.

Parameters
• x (int) – Number of boxes in the x, e.g. east-west direction

• y (int or float) – Number of boxes in the y, e.g. north-south direction

19.18. Interpolation and resampling methods 85

nctoolkit

19.18.11 nctoolkit.DataSet.box_range

DataSet.box_range(self, x=1, y=1)
Calculate the grid box range for all variables This is performed for each time step.

Parameters
• x (int) – Number of boxes in the x, e.g. east-west direction

• y (int or float) – Number of boxes in the y, e.g. north-south direction

19.19 Masking methods

DataSet.mask_box(self[, lon, lat]) Mask a lon/lat box

19.19.1 nctoolkit.DataSet.mask_box

DataSet.mask_box(self, lon=[- 180, 180], lat=[- 90, 90])
Mask a lon/lat box

Parameters
• lon (list) – Longitude range to mask. Must be of the form: [lon_min, lon_max]

• lat (list) – Latitude range to mask. Must be of the form: [lat_min, lat_max]

19.20 Anomaly methods

DataSet.annual_anomaly(self[, baseline, . . .]) Calculate annual anomalies for each variable based on a
baseline period The anomaly is derived by first calculat-
ing the climatological annual mean for the given baseline
period.

DataSet.monthly_anomaly(self[, baseline]) Calculate monthly anomalies based on a baseline period
The anomaly is derived by first calculating the climato-
logical monthly mean for the given baseline period.

19.20.1 nctoolkit.DataSet.annual_anomaly

DataSet.annual_anomaly(self, baseline=None, metric='absolute', window=1)
Calculate annual anomalies for each variable based on a baseline period The anomaly is derived by first calcu-
lating the climatological annual mean for the given baseline period. Annual means are then calculated for each
year and the anomaly is calculated compared with the baseline mean. This will be calculated on a per-file basis
in a multi-file dataset.

Parameters
• baseline (list) – Baseline years. This needs to be the first and last year of the climato-

logical period. Example: a baseline of [1980,1999] will result in anomalies against the 20
year climatology from 1980 to 1999.

• metric (str) – Set to “absolute” or “relative”, depending on whether you want the absolute

86 Chapter 19. API Reference

nctoolkit

or relative anomaly to be calculated.

• window (int) – A window for the anomaly. By default window = 1, i.e. the annual anomaly
is calculated. If, for example, window = 20, the 20 year rolling means will be used to calculate
the anomalies.

Examples

If you wanted to calculate an annual anomaly where values are compared with the mean for the years 1950-1969,
you would do this:

>>> ds.annual_anomaly(baseline = [1950, 1969])

By default, this results in the absolute difference to be used. If you wanted the anomaly to be calculated relative
to the baseline mean, you would do this:

>>> ds.annual_anomaly(baseline = [1950, 1969], metric = "relative")

You might want to smooth out the anomalies, so that you are looking at rolling averages. In that case you can
supply a windows. So if you wanted to calculate the anomaly using a rolling average with a 10 year window, you
would do this:

>>> ds.annual_anomaly(baseline = [1950, 1969], window = 10)

19.20.2 nctoolkit.DataSet.monthly_anomaly

DataSet.monthly_anomaly(self, baseline=None)
Calculate monthly anomalies based on a baseline period The anomaly is derived by first calculating the clima-
tological monthly mean for the given baseline period. Monthly means are then calculated for each year and the
anomaly is calculated compared with the baseline mean. This is calculated separately for each file in a multi-file
dataset.

Parameters baseline (list) – Baseline years. This needs to be the first and last year of the cli-
matological period. Example: a baseline of [1985,2005] will result in anomolies against 20 year
climatology from 1986 to 2005.

Examples

If you wanted to calculate a monthly anomaly where values are compared with the climatological monthly mean
for the years 1950-1969, you would do this:

>>> ds.monthly_anomaly(baseline = [1950, 1969])

19.20. Anomaly methods 87

nctoolkit

19.21 Statistical methods

DataSet.tmean(self[, over]) Calculate the temporal mean of all variables
DataSet.tmin(self[, over]) Calculate the temporal minimum of all variables
DataSet.tmedian(self[, over]) Calculate the temporal median of all variables :param

over: Time periods to average over.
DataSet.tpercentile(self[, p, over]) Calculate the temporal percentile of all variables
DataSet.tmax(self[, over]) Calculate the temporal maximum of all variables
DataSet.tsum(self[, over]) Calculate the temporal sum of all variables
DataSet.trange(self[, over]) Calculate the temporal range of all variables
DataSet.tvariance(self[, over]) Calculate the temporal variance of all variables
DataSet.tstdev(self[, over]) Calculate the temporal standard deviation of all vari-

ables
DataSet.tcumsum(self) Calculate the temporal cumulative sum of all variables
DataSet.tvar(self[, over]) Calculate the temporal variance of all variables
DataSet.cor_space(self[, var1, var2]) Calculate the correlation correct between two variables

in space This is calculated for each time step.
DataSet.cor_time(self[, var1, var2]) Calculate the correlation correct in time between two

variables The correlation is calculated for each grid cell,
ignoring missing values.

DataSet.spatial_mean(self) Calculate the area weighted spatial mean for all variables
This is performed for each time step.

DataSet.spatial_min(self) Calculate the spatial minimum for all variables This is
performed for each time step.

DataSet.spatial_max(self) Calculate the spatial maximum for all variables This is
performed for each time step.

DataSet.spatial_percentile(self[, p]) Calculate the spatial sum for all variables This is per-
formed for each time step.

DataSet.spatial_range(self) Calculate the spatial range for all variables This is per-
formed for each time step.

DataSet.spatial_sum(self[, by_area]) Calculate the spatial sum for all variables This is per-
formed for each time step.

DataSet.spatial_stdev(self) Calculate the spatial range for all variables This is per-
formed for each time step.

DataSet.spatial_var(self) Calculate the spatial range for all variables This is per-
formed for each time step.

DataSet.centre(self[, by, by_area]) Calculate the latitudinal or longitudinal centre for each
year/month combination in files. This applies to each
file in an ensemble. by : str Set to ‘latitude’ if you want
the latitiduinal centre calculated. ‘longitude’ for longi-
tudinal. by_area : bool If the variable is a value/m2 type
variable, set to True, otherwise set to False.

DataSet.zonal_mean(self) Calculate the zonal mean for each year/month combina-
tion in files.

DataSet.zonal_min(self) Calculate the zonal minimum for each year/month com-
bination in files.

DataSet.zonal_max(self) Calculate the zonal maximum for each year/month com-
bination in files.

DataSet.zonal_range(self) Calculate the zonal range for each year/month combina-
tion in files.

continues on next page

88 Chapter 19. API Reference

nctoolkit

Table 23 – continued from previous page
DataSet.meridonial_mean(self) Calculate the meridonial mean for each year/month com-

bination in files.
DataSet.meridonial_min(self) Calculate the meridonial minimum for each year/month

combination in files.
DataSet.meridonial_max(self) Calculate the meridonial maximum for each year/month

combination in files.
DataSet.meridonial_range(self) Calculate the meridonial range for each year/month

combination in files.

19.21.1 nctoolkit.DataSet.tmean

DataSet.tmean(self, over='time')
Calculate the temporal mean of all variables

Parameters over (str or list) – Time periods to average over. Options are ‘year’, ‘month’, ‘day’.

Examples

If you want to calculate mean over all time steps. Do the following:

>>> ds.tmean()

If you want to calculate the mean for each year in a dataset, do this:

>>> ds.tmean("year")

If you want to calculate the mean for each month in a dataset, do this:

>>> ds.tmean("month")

If you want to calculate the mean for each month in each year in a dataset, do this:

>>> ds.tmean(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical mean, you would do this:

>>> ds.tmean("month")

A daily climatological mean would be the following:

>>> ds.tmean("day")

19.21. Statistical methods 89

nctoolkit

19.21.2 nctoolkit.DataSet.tmin

DataSet.tmin(self, over='time')
Calculate the temporal minimum of all variables

Parameters over (str or list) – Time periods to average over. Options are ‘year’, ‘month’, ‘day’.

Examples

If you want to calculate minimum over all time steps. Do the following:

>>> ds.tmin()

If you want to calculate the minimum for each year in a dataset, do this:

>>> ds.tmin("year")

If you want to calculate the minimum for each month in a dataset, do this:

>>> ds.tmin("month")

If you want to calculate the minimum for each month in each year in a dataset, do this:

>>> ds.tmin(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical min, you would do this:

>>> ds.tmin("month")

A daily climatological minimum would be the following:

>>> ds.tmin("day")

19.21.3 nctoolkit.DataSet.tmedian

DataSet.tmedian(self, over='time')
Calculate the temporal median of all variables :param over: Time periods to average over. Options are ‘year’,
‘month’, ‘day’. :type over: str or list

Examples

If you want to calculate median over all time steps. Do the following:

>>> ds.tmedian()

If you want to calculate the median for each year in a dataset, do this:

>>> ds.tmedian("year")

If you want to calculate the median for each month in a dataset, do this:

90 Chapter 19. API Reference

nctoolkit

>>> ds.tmedian("month")

If you want to calculate the median for each month in each year in a dataset, do this:

>>> ds.tmedian(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical median, you would do this:

>>> ds.tmedian("month")

A daily climatological median would be the following:

>>> ds.tmedian("day")

19.21.4 nctoolkit.DataSet.tpercentile

DataSet.tpercentile(self, p=None, over='time')
Calculate the temporal percentile of all variables

Parameters p (float or int) – Percentile to calculate

Examples

If you want to calculate the 20th percentile over all time steps. Do the following:

>>> ds.tpercentile(20)

If you want to calculate the 20th percentile for each year in a dataset, do this:

>>> ds.tpercentile(20)

19.21.5 nctoolkit.DataSet.tmax

DataSet.tmax(self, over='time')
Calculate the temporal maximum of all variables

Parameters over (str or list) – Time periods to average over. Options are ‘year’, ‘month’, ‘day’.

Examples

If you want to calculate maximum over all time steps. Do the following:

>>> ds.tmax()

If you want to calculate the maximum for each year in a dataset, do this:

>>> ds.tmax("year")

If you want to calculate the maximum for each month in a dataset, do this:

19.21. Statistical methods 91

nctoolkit

>>> ds.tmax("month")

If you want to calculate the maximum for each month in each year in a dataset, do this:

>>> ds.tmax(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical max, you would do this:

>>> ds.tmax("month")

A daily climatological maximum would be the following:

>>> ds.tmax("day")

19.21.6 nctoolkit.DataSet.tsum

DataSet.tsum(self, over='time')
Calculate the temporal sum of all variables

19.21.7 nctoolkit.DataSet.trange

DataSet.trange(self, over='time')
Calculate the temporal range of all variables

Parameters over (str or list) – Time periods to average over. Options are ‘year’, ‘month’, ‘day’.

Examples

If you want to calculate range over all time steps. Do the following:

>>> ds.trange()

If you want to calculate the range for each year in a dataset, do this:

>>> ds.trange("year")

If you want to calculate the range for each month in a dataset, do this:

>>> ds.trange("month")

If you want to calculate the range for each month in each year in a dataset, do this:

>>> ds.trange(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical range, you would do this:

>>> ds.trange("month")

A daily climatological range would be the following:

92 Chapter 19. API Reference

nctoolkit

>>> ds.trange("day")

19.21.8 nctoolkit.DataSet.tvariance

DataSet.tvariance(self, over='time')
Calculate the temporal variance of all variables

Parameters over (str or list) – Time periods to average over. Options are ‘year’, ‘month’, ‘day’.

Examples

If you want to calculate variance over all time steps. Do the following:

>>> ds.tvariance()

If you want to calculate the variance for each year in a dataset, do this:

>>> ds.tvariance("year")

If you want to calculate the variance for each month in a dataset, do this:

>>> ds.tvariance("month")

If you want to calculate the variance for each month in each year in a dataset, do this:

>>> ds.tvariance(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical var, you would do this:

>>> ds.tvariance("month")

A daily climatological variance would be the following:

>>> ds.tvariance("day")

19.21.9 nctoolkit.DataSet.tstdev

DataSet.tstdev(self, over='time')
Calculate the temporal standard deviation of all variables

Parameters over (str or list) – Time periods to average over. Options are ‘year’, ‘month’, ‘day’.

19.21. Statistical methods 93

nctoolkit

Examples

If you want to calculate standard deviation over all time steps. Do the following:

>>> ds.tstdev()

If you want to calculate the standard deviation for each year in a dataset, do this:

>>> ds.tstdev("year")

If you want to calculate the standard deviation for each month in a dataset, do this:

>>> ds.tstdev("month")

If you want to calculate the standard deviation for each month in each year in a dataset, do this:

>>> ds.tstdev(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical var, you would do this:

>>> ds.tstdev("month")

A daily climatological standard deviation would be the following:

>>> ds.tstdev("day")

19.21.10 nctoolkit.DataSet.tcumsum

DataSet.tcumsum(self)
Calculate the temporal cumulative sum of all variables

Examples

If you want to calculate the cumulative sum for all variables over all timesteps, do this:

>>> ds.tcumsum()

19.21.11 nctoolkit.DataSet.tvar

DataSet.tvar(self, over='time')
Calculate the temporal variance of all variables

Parameters over (str or list) – Time periods to average over. Options are ‘year’, ‘month’, ‘day’.

94 Chapter 19. API Reference

nctoolkit

Examples

If you want to calculate variance over all time steps. Do the following:

>>> ds.tvar()

If you want to calculate the variance for each year in a dataset, do this:

>>> ds.tvar("year")

If you want to calculate the variance for each month in a dataset, do this:

>>> ds.tvar("month")

If you want to calculate the variance for each month in each year in a dataset, do this:

>>> ds.tvar(["year", "month"])

This method will also let you easily calculate climatologies. So, if you wanted to calculate a monthly climato-
logical var, you would do this:

>>> ds.tvar("month")

A daily climatological variance would be the following:

>>> ds.tvar("day")

19.21.12 nctoolkit.DataSet.cor_space

DataSet.cor_space(self, var1=None, var2=None)
Calculate the correlation correct between two variables in space This is calculated for each time step. The
correlation coefficient coefficient is calculated using values in all grid cells, ignoring missing values.

Parameters
• var1 (str) – The first variable

• var2 (str) – The second variable

Examples

If you wanted to calculate the spatial correlation coefficient between variables x and y in a dataset, you would do
this:

>>> ds.cor_space("x", "y")

The correlation coefficient will be calculated for each time step.

19.21. Statistical methods 95

nctoolkit

19.21.13 nctoolkit.DataSet.cor_time

DataSet.cor_time(self, var1=None, var2=None)
Calculate the correlation correct in time between two variables The correlation is calculated for each grid cell,
ignoring missing values.

Parameters
• var1 (str) – The first variable

• var2 (str) – The second variable

Examples

If you wanted to calculate the temporal correlation coefficient between variables x and y in a dataset, you would
do this:

>>> ds.cor_space("x", "y")

The correlation coefficient will be calculated for each grid cell. This method will indicate how temporally cor-
related variables are in different spatial regions.

19.21.14 nctoolkit.DataSet.spatial_mean

DataSet.spatial_mean(self)
Calculate the area weighted spatial mean for all variables This is performed for each time step.

Examples

If you want to calculate the spatial mean for a dataset, just do the following:

>>> ds.spatial_mean()

Note that this calculation will calculate the average using weights based on each cell’s area. If cell areas cannot
be calculated, it will take a straight average, and a warning will say this.

19.21.15 nctoolkit.DataSet.spatial_min

DataSet.spatial_min(self)
Calculate the spatial minimum for all variables This is performed for each time step.

Examples

If you want to calculate the spatial minimum for a dataset, just do the following:

>>> ds.spatial_min()

96 Chapter 19. API Reference

nctoolkit

19.21.16 nctoolkit.DataSet.spatial_max

DataSet.spatial_max(self)
Calculate the spatial maximum for all variables This is performed for each time step.

Examples

If you want to calculate the spatial maximum for a dataset, just do the following:

>>> ds.spatial_max()

19.21.17 nctoolkit.DataSet.spatial_percentile

DataSet.spatial_percentile(self, p=None)
Calculate the spatial sum for all variables This is performed for each time step. :param p: Percentile to calculate.
0<=p<=100. :type p: int or float

Examples

If you want to calculate the median of each variable across space for a dataset, just do the following:

>>> ds.spatial_percentile(50)

19.21.18 nctoolkit.DataSet.spatial_range

DataSet.spatial_range(self)
Calculate the spatial range for all variables This is performed for each time step.

Examples

If you want to calculate the range of each variable across space for a dataset, just do the following:

>>> ds.spatial_max()

19.21.19 nctoolkit.DataSet.spatial_sum

DataSet.spatial_sum(self, by_area=False)
Calculate the spatial sum for all variables This is performed for each time step.

Parameters by_area (boolean) – Set to True if you want to multiply the values by the grid cell
area before summing over space. Default is False.

19.21. Statistical methods 97

nctoolkit

Examples

If you want to calculate the spatial sum each variable across space for a dataset, just do the following:

>>> ds.spatial_sum()

By default, this method simply sums up each grid cell value. In some cases this is not suitable. For example, the
values in each cell may concentrations or values per square metre etc. In this case multiplying each cell value by
the cell area is more suitable. Do the following:

>>> ds.spatial_sum(by_area = True)

Each cell’s value will be multiplied by the area of the cell (in square metres) prior to calculating the spatial sum.

19.21.20 nctoolkit.DataSet.spatial_stdev

DataSet.spatial_stdev(self)
Calculate the spatial range for all variables This is performed for each time step.

Examples

If you want to calculate the range of each variable across space for a dataset, just do the following:

>>> ds.spatial_max()

19.21.21 nctoolkit.DataSet.spatial_var

DataSet.spatial_var(self)
Calculate the spatial range for all variables This is performed for each time step.

Examples

If you want to calculate the range of each variable across space for a dataset, just do the following:

>>> ds.spatial_max()

19.21.22 nctoolkit.DataSet.centre

DataSet.centre(self, by='latitude', by_area=False)
Calculate the latitudinal or longitudinal centre for each year/month combination in files. This applies to each file
in an ensemble. by : str

Set to ‘latitude’ if you want the latitiduinal centre calculated. ‘longitude’ for longitudinal.

by_area [bool] If the variable is a value/m2 type variable, set to True, otherwise set to False.

98 Chapter 19. API Reference

nctoolkit

19.21.23 nctoolkit.DataSet.zonal_mean

DataSet.zonal_mean(self)
Calculate the zonal mean for each year/month combination in files. This applies to each file in an ensemble.

Examples

If you want to calculate the zonal mean for a dataset, do the following:

>>> ds.zonal_mean()

19.21.24 nctoolkit.DataSet.zonal_min

DataSet.zonal_min(self)
Calculate the zonal minimum for each year/month combination in files. This applies to each file in an ensemble.

Examples

If you want to calculate the zonal minimum for a dataset, do the following:

>>> ds.zonal_min()

19.21.25 nctoolkit.DataSet.zonal_max

DataSet.zonal_max(self)
Calculate the zonal maximum for each year/month combination in files. This applies to each file in an ensemble.

Examples

If you want to calculate the zonal maximum for a dataset, do the following:

>>> ds.zonal_max()

19.21.26 nctoolkit.DataSet.zonal_range

DataSet.zonal_range(self)
Calculate the zonal range for each year/month combination in files. This applies to each file in an ensemble.

19.21. Statistical methods 99

nctoolkit

Examples

If you want to calculate the zonal range for a dataset, do the following:

>>> ds.zonal_range()

19.21.27 nctoolkit.DataSet.meridonial_mean

DataSet.meridonial_mean(self)
Calculate the meridonial mean for each year/month combination in files. This applies to each file in an ensemble.

Examples

If you want to calculate the meridonial mean for a dataset, do the following:

>>> ds.meridonial_mean()

19.21.28 nctoolkit.DataSet.meridonial_min

DataSet.meridonial_min(self)
Calculate the meridonial minimum for each year/month combination in files. This applies to each file in an
ensemble.

Examples

If you want to calculate the meridonial minimum for a dataset, do the following:

>>> ds.meridonial_min()

19.21.29 nctoolkit.DataSet.meridonial_max

DataSet.meridonial_max(self)
Calculate the meridonial maximum for each year/month combination in files. This applies to each file in an
ensemble.

Examples

If you want to calculate the meridonial maximum for a dataset, do the following:

>>> ds.meridonial_max()

100 Chapter 19. API Reference

nctoolkit

19.21.30 nctoolkit.DataSet.meridonial_range

DataSet.meridonial_range(self)
Calculate the meridonial range for each year/month combination in files. This applies to each file in an ensemble.

Examples

If you want to calculate the meridonial range for a dataset, do the following:

>>> ds.meridonial_max()

19.22 Merging methods

DataSet.merge(self[, join, match]) Merge a multi-file ensemble into a single file 2 methods
are available.

19.22.1 nctoolkit.DataSet.merge

DataSet.merge(self, join='variables', match=['year', 'month', 'day'])
Merge a multi-file ensemble into a single file 2 methods are available. 1) merging files with different variables,
but the same time steps. 2) merging files with the same variables, with different times.

Parameters
• join (str) – This defines the type of merging to carry out. “variables”: this will merge by

variable, so that an ensemble with different variables, but the same number of time steps is
merged to a single file. “time”: this will merge files with the same variables, but different
times to a single file, into a single file with ordered times. join defaults to “variables”, and
uses partial matches, so “var” will give variable based merging.

• match (list, str) – Optional argument when join = ‘variables’. A list or str stating what
must match in the netCDF files. Defaults to year/month/day. This list must be some com-
bination of year/month/day. An error will be thrown if the elements of time in match do
not match across all netCDF files. The only exception is if there is a single date file in the
ensemble.

19.23 Splitting methods

DataSet.split(self[, by]) Split the dataset Each file in the ensemble will be sepa-
rated into new files based on the splitting argument.

19.23. Splitting methods 101

nctoolkit

19.23.1 nctoolkit.DataSet.split

DataSet.split(self, by=None)
Split the dataset Each file in the ensemble will be separated into new files based on the splitting argument.

Parameters by (str) – Available by arguments are ‘year’, ‘month’, ‘yearmonth’, ‘season’, ‘day’
‘name’, “timestep”. year will split files by year, month will split files by month, yearmonth will
split files by year and month; season will split files by year, day will split files by day. Using
“timestep” will split files by timestep. ‘name’ will split by variable name

Examples

If you want to split each file into a dataset into a separate files for each year, do the following:

>>> ds.split("year")

If you wanted to split by month, do the following:

>>> ds.split("month")

19.24 Output and formatting methods

DataSet.to_nc(self, out[, zip, overwrite]) Save a dataset to a named file This will only work with
single file datasets.

DataSet.to_xarray(self[, decode_times]) Open a dataset as an xarray object
DataSet.to_dataframe(self[, decode_times]) Open a dataset as a pandas data frame
DataSet.zip(self) Zip the dataset This will compress the files within the

dataset.
DataSet.format(self[, ext]) Zip the dataset This will compress the files within the

dataset. This works lazily. :param ext: New format.
Must be one of “nc”, “nc1”, “nc2”, “nc4” and “nc5” .
netCDF = nc1 netCDF version 2 (64-bit offset) = nc2/nc
netCDF4 (HDF5) = nc4 netCDF4-classi = nc4c netCDF
version 5 (64-bit data) = nc5 :type ext: str.

19.24.1 nctoolkit.DataSet.to_nc

DataSet.to_nc(self, out, zip=True, overwrite=False)
Save a dataset to a named file This will only work with single file datasets.

Parameters
• out (str) – Output file name.

• zip (boolean) – True/False depending on whether you want to zip the file. Default is True.

• overwrite (boolean) – If out file exists, do you want to overwrite it? Default is False.

102 Chapter 19. API Reference

nctoolkit

Examples

If you want to export a dataset to a netCDF file, do the following:

>>> ds.to_nc("out.nc")

By default this file will be zipped. If you do not want it zipped, do this:

>>> ds.to_nc("out.nc", zip = False)

By default this cannot overwrite files. If the output file exists, do the following:

>>> ds.to_nc("out.nc", overwrite = True)

19.24.2 nctoolkit.DataSet.to_xarray

DataSet.to_xarray(self, decode_times=True)
Open a dataset as an xarray object

Parameters decode_times (boolean) – Set to False if you do not want xarray to decode the times.
Default is True. If xarray cannot decode times, CDO will be used.

Returns to_xarray
Return type xarray.Dataset

Examples

If you want to convert a dataset to an xarray dataset, do the following:

>>> ds.to_xarray()

This will return an xarray dataset.

If you do not want time to be decoded, do the following:

>>> ds.to_xarray(decode_times = False)

19.24.3 nctoolkit.DataSet.to_dataframe

DataSet.to_dataframe(self, decode_times=True)
Open a dataset as a pandas data frame

Parameters decode_times (boolean) – Set to False if you do not want xarray to decode the times
prior to conversion to data frame. Default is True.

Returns to_dataframe
Return type pandas.DataFrame

19.24. Output and formatting methods 103

nctoolkit

19.24.4 nctoolkit.DataSet.zip

DataSet.zip(self)
Zip the dataset This will compress the files within the dataset. This works lazily.

Examples

If you want to zip the files in a dataset, do the following:

>>> ds.zip()

This will occur lazily, so will only occur after everything has been evaluated.

19.24.5 nctoolkit.DataSet.format

DataSet.format(self, ext=None)
Zip the dataset This will compress the files within the dataset. This works lazily. :param ext: New format. Must
be one of “nc”, “nc1”, “nc2”, “nc4” and “nc5” .

netCDF = nc1 netCDF version 2 (64-bit offset) = nc2/nc netCDF4 (HDF5) = nc4 netCDF4-classi =
nc4c netCDF version 5 (64-bit data) = nc5

19.25 Miscellaneous methods

DataSet.na_count(self[, over]) Calculate the number of missing values
DataSet.na_frac(self[, over]) Calculate the number of missing values
DataSet.distribute(self[, m, n]) Split the dataset into multiple evenly sized horizontal

and vertical new files
DataSet.collect(self) Collect a dataset that has been split using distribute
DataSet.cell_area(self[, join]) Calculate the area of grid cells.
DataSet.first_above(self[, x]) Identify the time step when a value is first above a thresh-

old This will do the comparison with either a number, a
Dataset or a netCDF file. :param x: An int, float, single
file dataset or netCDF file to use for the threshold(s). If
comparing with a dataset or single file there must only
be a single variable in it. The grids must be the same.
:type x: int, float, DataSet or netCDF file.

DataSet.first_below(self[, x]) Identify the time step when a value is first below a thresh-
old This will do the comparison with either a number, a
Dataset or a netCDF file. :param x: An int, float, single
file dataset or netCDF file to use for the threshold(s). If
comparing with a dataset or single file there must only
be a single variable in it. The grids must be the same.
:type x: int, float, DataSet or netCDF file.

continues on next page

104 Chapter 19. API Reference

nctoolkit

Table 27 – continued from previous page
DataSet.last_above(self[, x]) Identify the final time step when a value is above a

threshold This will do the comparison with either a num-
ber, a Dataset or a netCDF file. :param x: An int, float,
single file dataset or netCDF file to use for the thresh-
old(s). If comparing with a dataset or single file there
must only be a single variable in it. The grids must be
the same. :type x: int, float, DataSet or netCDF file.

DataSet.last_below(self[, x]) Identify the last time step when a value is below a thresh-
old This will do the comparison with either a number, a
Dataset or a netCDF file. :param x: An int, float, single
file dataset or netCDF file to use for the threshold(s). If
comparing with a dataset or single file there must only
be a single variable in it. The grids must be the same.
:type x: int, float, DataSet or netCDF file.

DataSet.cdo_command(self[, command, ensemble]) Apply a cdo command
DataSet.nco_command(self[, command, ensemble]) Apply an nco command
DataSet.compare(self[, expression]) Compare all variables to a constant
DataSet.gt(self, x) Method to calculate if variable in dataset is greater than

that in another file or dataset This currently only works
with single file datasets

DataSet.lt(self, x) Method to calculate if variable in dataset is less than that
in another file or dataset This currently only works with
single file datasets

DataSet.reduce_dims(self) Reduce dimensions of data This will remove any dimen-
sions with only one value.

DataSet.reduce_grid(self[, mask]) Reduce the dataset to non-zero locations in a mask
:param mask: single variable dataset or path to .nc file.
The mask must have an identical grid to the dataset.
:type mask: str or dataset.

DataSet.set_precision(self, x) Set the precision in a dataset
DataSet.check(self) Check contents of files for common data problems.
DataSet.is_corrupt(self) Check if files are corrupt
DataSet.fix_nemo_ersem_grid(self) A quick hack to change the grid file in North West Eu-

ropean shelf Nemo grids.
DataSet.set_gridtype(self, grid) Set the grid type.
DataSet.surface_mask(self) Create a mask identifying the shallowest cell without

missing values.
DataSet.strip_variables(self[, vars]) Remove any variables, such as bnds etc., from variables.

19.25.1 nctoolkit.DataSet.na_count

DataSet.na_count(self, over='time')
Calculate the number of missing values

Parameters over (str or list) – Time periods to to the count over over. Options are ‘time’,
‘year’, ‘month’, ‘day’.

19.25. Miscellaneous methods 105

nctoolkit

19.25.2 nctoolkit.DataSet.na_frac

DataSet.na_frac(self, over='time')
Calculate the number of missing values

Parameters over (str or list) – Time periods to to the count over over. Options are ‘time’,
‘year’, ‘month’, ‘day’.

19.25.3 nctoolkit.DataSet.distribute

DataSet.distribute(self, m=1, n=1)
Split the dataset into multiple evenly sized horizontal and vertical new files

Parameters
• m (int) – Number of rows

• n (int) – Number of columns

19.25.4 nctoolkit.DataSet.collect

DataSet.collect(self)
Collect a dataset that has been split using distribute

19.25.5 nctoolkit.DataSet.cell_area

DataSet.cell_area(self, join=True)
Calculate the area of grid cells. Area of grid cells is given in square meters.

Parameters join (boolean) – Set to False if you only want the cell areas to be in the output.
join=True adds the areas as a variable to the dataset. Defaults to True.

Examples

If you wanted to add the cell_areas as a new variable in a dataset, you would do the following:

>>> ds.cell_area()

If you wanted to replace a dataset with the cell areas of that dataset, you would do the following:

>>> ds.cell_area(join = False)

19.25.6 nctoolkit.DataSet.first_above

DataSet.first_above(self, x=None)
Identify the time step when a value is first above a threshold This will do the comparison with either a number,
a Dataset or a netCDF file. :param x: An int, float, single file dataset or netCDF file to use for the threshold(s).

If comparing with a dataset or single file there must only be a single variable in it. The grids must be
the same.

106 Chapter 19. API Reference

nctoolkit

Examples

If you wanted to calculate the first time step where the value in a grid cell goes above 10, you would do the
following

>>> ds.first_above(10)

If you wanted to calculate the first time step where the value in a grid cell goes above that in another dataset, the
following will work. Note that both datasets must have the same grid, and can only have single variables. The
second dataset can, of course, only have one timestep.

>>> ds.first_above(ds1)

19.25.7 nctoolkit.DataSet.first_below

DataSet.first_below(self, x=None)
Identify the time step when a value is first below a threshold This will do the comparison with either a number,
a Dataset or a netCDF file. :param x: An int, float, single file dataset or netCDF file to use for the threshold(s).

If comparing with a dataset or single file there must only be a single variable in it. The grids must be
the same.

Examples

If you wanted to calculate the first time step where the value in a grid cell goes below 10, you would do the
following

>>> ds.first_below(10)

If you wanted to calculate the first time step where the value in a grid cell goes above that in another dataset, the
following will work. Note that both datasets must have the same grid, and can only have single variables. The
second dataset can, of course, only have one timestep.

>>> ds.first_below(ds1)

19.25.8 nctoolkit.DataSet.last_above

DataSet.last_above(self, x=None)
Identify the final time step when a value is above a threshold This will do the comparison with either a number,
a Dataset or a netCDF file. :param x: An int, float, single file dataset or netCDF file to use for the threshold(s).

If comparing with a dataset or single file there must only be a single variable in it. The grids must be
the same.

19.25. Miscellaneous methods 107

nctoolkit

Examples

If you wanted to calculate the last time step where the value in a grid cell is above 10, you would do the following

>>> ds.first_above(10)

If you wanted to calculate the last time step where the value in a grid cell goes above that in another dataset, the
following will work. Note that both datasets must have the same grid, and can only have single variables. The
second dataset can, of course, only have one timestep.

>>> ds.first_above(ds1)

19.25.9 nctoolkit.DataSet.last_below

DataSet.last_below(self, x=None)
Identify the last time step when a value is below a threshold This will do the comparison with either a number,
a Dataset or a netCDF file. :param x: An int, float, single file dataset or netCDF file to use for the threshold(s).

If comparing with a dataset or single file there must only be a single variable in it. The grids must be
the same.

Examples

If you wanted to calculate the last time step where the value in a grid cell is below 10, you would do the following

>>> ds.last_below(10)

If you wanted to calculate the last time step where the value in a grid cell is above that in another dataset, the
following will work. Note that both datasets must have the same grid, and can only have single variables. The
second dataset can, of course, only have one timestep.

>>> ds.last_below(ds1)

19.25.10 nctoolkit.DataSet.cdo_command

DataSet.cdo_command(self, command=None, ensemble=False)
Apply a cdo command

Parameters
• command (string) – cdo command to call. This command must be such that “cdo {com-

mand} infile outfile” will run.

• ensemble (bool) – Is this an ensemble command?

108 Chapter 19. API Reference

nctoolkit

19.25.11 nctoolkit.DataSet.nco_command

DataSet.nco_command(self, command=None, ensemble=False)
Apply an nco command

Parameters
• command (string) – nco command to call. This must be of a form such that “nco {com-

mand} infile outfile” will run.

• ensemble (boolean) – Set to True if you want the command to take all of the files as input.
This is useful for ensemble methods.

19.25.12 nctoolkit.DataSet.compare

DataSet.compare(self, expression=None)
Compare all variables to a constant

Parameters expression (str) – This a regular comparison such as “<0”, “>0”, “==0”

Examples

If you wanted to identify grid cells with positive values you would do the following:

>>> ds.compare(">0")

This will be calculcated for each time step.

If you wanted to identify grid cells with negative values, you would do this

>>> ds.compare("<0")

19.25.13 nctoolkit.DataSet.gt

DataSet.gt(self, x)
Method to calculate if variable in dataset is greater than that in another file or dataset This currently only works
with single file datasets

Parameters x (str or single file dataset) – File path or nctoolkit dataset

19.25.14 nctoolkit.DataSet.lt

DataSet.lt(self, x)
Method to calculate if variable in dataset is less than that in another file or dataset This currently only works with
single file datasets

Parameters x (str or single file dataset) – File path or nctoolkit dataset

19.25. Miscellaneous methods 109

nctoolkit

19.25.15 nctoolkit.DataSet.reduce_dims

DataSet.reduce_dims(self)
Reduce dimensions of data This will remove any dimensions with only one value. For example, if only selecting
one vertical level, the vertical dimension will be removed.

Examples

If you want to remove any dimensions that have only one value, do the following:

>>> ds.reduce_dims("out.nc")

Note that this will work lazily. This method is most useful when you want to simplify datasets before exporting
them to something like a pandas dataframe.

19.25.16 nctoolkit.DataSet.reduce_grid

DataSet.reduce_grid(self, mask=None)
Reduce the dataset to non-zero locations in a mask :param mask: single variable dataset or path to .nc file.

The mask must have an identical grid to the dataset.

19.25.17 nctoolkit.DataSet.set_precision

DataSet.set_precision(self, x)
Set the precision in a dataset

Parameters
• x (str) – The precision. One of ‘I8’, ‘I16’, ‘I32’, ‘F32’, ‘F64’.

• month (int) – The month

• day (int) – The day

• base_year (int) – The base year for time creation in the netCDF. Defaults to 1900.

19.25.18 nctoolkit.DataSet.check

DataSet.check(self)
Check contents of files for common data problems.

110 Chapter 19. API Reference

nctoolkit

19.25.19 nctoolkit.DataSet.is_corrupt

DataSet.is_corrupt(self)
Check if files are corrupt

19.25.20 nctoolkit.DataSet.fix_nemo_ersem_grid

DataSet.fix_nemo_ersem_grid(self)
A quick hack to change the grid file in North West European shelf Nemo grids.

19.25.21 nctoolkit.DataSet.set_gridtype

DataSet.set_gridtype(self, grid)
Set the grid type. Only use this if, for example, the grid is “generic” when it should be lonlat.

Parameters grid (str) – Grid type. Needs to be one of “curvilinear”, “unstructured”, “derefer-
ence”, “regular”, “regularnn” or “lonlat”.

19.25.22 nctoolkit.DataSet.surface_mask

DataSet.surface_mask(self)
Create a mask identifying the shallowest cell without missing values. This converts a dataset to a mask identifying
which cell represents top level, for example the sea surface. 1 identifies the shallowest cell with non-missing
values. Everything else is 0, or missing. At present this method only uses the first available variable from
netCDF files, so it may not be suitable for all data

19.25.23 nctoolkit.DataSet.strip_variables

DataSet.strip_variables(self, vars=None)
Remove any variables, such as bnds etc., from variables. This should probably only be done at the end of a
processing chain before converting to a dataframe etc., as it is stripping away critical info for netCDF operations.

Parameters vars (str or list) – individual or list of variables to select and strip. All variables
will be stripped if this is not defined.

19.26 Ecological methods

DataSet.phenology(self[, var, metric, p]) Calculate phenologies from a dataset Each file in an en-
semble must only cover a single year, and ideally have
all days.

19.26. Ecological methods 111

nctoolkit

19.26.1 nctoolkit.DataSet.phenology

DataSet.phenology(self, var=None, metric=None, p=None)
Calculate phenologies from a dataset Each file in an ensemble must only cover a single year, and ideally have all
days. The method assumes datasets have daily resolution.

Parameters
• var (str) – Variable to analyze.

• metric (str) – Must be peak, middle, start or end. Peak is defined as the day of the max-
imum value. Middle is the day when the cumulative total of the variable first exceeds the
cumulative total for the entire year. Start or end is defined as the first day when the cumulative
total exceeds a percentile p of the maximum cumulative total.

• p (str) – Percentile to use for start or end.

112 Chapter 19. API Reference

CHAPTER

TWENTY

PACKAGE INFO

This package was created by Robert Wilson at Plymouth Marine Laboratory (PML).

20.1 Acknowledgements

The current codebase of nctoolkit was developed using funding from the NERC Climate Linked Atlantic Sector Sci-
ence programme (NE/R015953/1) and a combination of UK Research and Innovation (UKRI) and European Research
Council (ERC) funded research projects.

20.2 Bugs and issues

If you identify bugs or issues with the package please raise an issue at PML’s Marine Systems Modelling group’s
GitHub page here or contact nctoolkit’s creator at rwi@pml.ac.uk.

20.3 Contributions welcome

The package is new, with new features being added each month. There remain a large number of features that could be
added, especially for dealing with atmospheric data. If packages users are interested in contributing or suggesting new
features they are welcome to raise and issue at the package’s GitHub page or contact me.

113

https://gtr.ukri.org/projects?ref=NE%2FR015953%2F1
https://github.com/pmlmodelling/nctoolkit/issues
mailto:rwi@pml.ac.uk

nctoolkit

114 Chapter 20. Package info

PYTHON MODULE INDEX

n
nctoolkit.append, 59
nctoolkit.remove, 59

115

nctoolkit

116 Python Module Index

INDEX

A
abs() (nctoolkit.DataSet method), 72
add() (nctoolkit.DataSet method), 72
annual_anomaly() (nctoolkit.DataSet method), 86
assign() (nctoolkit.DataSet method), 62

B
bottom() (nctoolkit.DataSet method), 65
bottom_mask() (nctoolkit.DataSet method), 68
box_max() (nctoolkit.DataSet method), 85
box_mean() (nctoolkit.DataSet method), 85
box_min() (nctoolkit.DataSet method), 85
box_range() (nctoolkit.DataSet method), 86
box_sum() (nctoolkit.DataSet method), 85

C
calendar (nctoolkit.DataSet property), 61
cdo_command() (nctoolkit.DataSet method), 108
cell_area() (nctoolkit.DataSet method), 106
centre() (nctoolkit.DataSet method), 98
check() (nctoolkit.DataSet method), 110
collect() (nctoolkit.DataSet method), 106
compare() (nctoolkit.DataSet method), 109
contents (nctoolkit.DataSet property), 60
copy() (nctoolkit.DataSet method), 58
cor_space() (in module nctoolkit), 59
cor_space() (nctoolkit.DataSet method), 95
cor_time() (in module nctoolkit), 59
cor_time() (nctoolkit.DataSet method), 96
create_ensemble() (in module nctoolkit), 71
crop() (nctoolkit.DataSet method), 79
current (nctoolkit.DataSet property), 61

D
distribute() (nctoolkit.DataSet method), 106
divide() (nctoolkit.DataSet method), 76
drop() (nctoolkit.DataSet method), 81

E
ensemble_max() (nctoolkit.DataSet method), 78
ensemble_mean() (nctoolkit.DataSet method), 77

ensemble_min() (nctoolkit.DataSet method), 77
ensemble_percentile() (nctoolkit.DataSet method),

78
ensemble_range() (nctoolkit.DataSet method), 78
ensemble_stdev() (nctoolkit.DataSet method), 78
ensemble_sum() (nctoolkit.DataSet method), 78
ensemble_var() (nctoolkit.DataSet method), 79
exp() (nctoolkit.DataSet method), 73

F
fill_na() (nctoolkit.DataSet method), 85
first_above() (nctoolkit.DataSet method), 106
first_below() (nctoolkit.DataSet method), 107
fix_nemo_ersem_grid() (nctoolkit.DataSet method),

111
format() (nctoolkit.DataSet method), 104
from_xarray() (in module nctoolkit), 58

G
gt() (nctoolkit.DataSet method), 109

H
history (nctoolkit.DataSet property), 61

I
invert_levels() (nctoolkit.DataSet method), 68
is_corrupt() (nctoolkit.DataSet method), 111

L
last_above() (nctoolkit.DataSet method), 107
last_below() (nctoolkit.DataSet method), 108
levels (nctoolkit.DataSet property), 61
log() (nctoolkit.DataSet method), 73
log10() (nctoolkit.DataSet method), 74
lt() (nctoolkit.DataSet method), 109

M
mask_box() (nctoolkit.DataSet method), 86
merge() (in module nctoolkit), 58
merge() (nctoolkit.DataSet method), 101
meridonial_max() (nctoolkit.DataSet method), 100

117

nctoolkit

meridonial_mean() (nctoolkit.DataSet method), 100
meridonial_min() (nctoolkit.DataSet method), 100
meridonial_range() (nctoolkit.DataSet method), 101
module

nctoolkit.append, 59
nctoolkit.remove, 59

monthly_anomaly() (nctoolkit.DataSet method), 87
months (nctoolkit.DataSet property), 60
multiply() (nctoolkit.DataSet method), 74

N
na_count() (nctoolkit.DataSet method), 105
na_frac() (nctoolkit.DataSet method), 106
ncformat (nctoolkit.DataSet property), 61
nco_command() (nctoolkit.DataSet method), 109
nctoolkit.append

module, 59
nctoolkit.remove

module, 59

O
open_data() (in module nctoolkit), 56
open_geotiff() (in module nctoolkit), 58
open_thredds() (in module nctoolkit), 57
open_url() (in module nctoolkit), 57
options() (in module nctoolkit), 55

P
phenology() (nctoolkit.DataSet method), 112
plot() (nctoolkit.DataSet method), 62
power() (nctoolkit.DataSet method), 74

R
reduce_dims() (nctoolkit.DataSet method), 110
reduce_grid() (nctoolkit.DataSet method), 110
regrid() (nctoolkit.DataSet method), 83
rename() (nctoolkit.DataSet method), 62
resample_grid() (nctoolkit.DataSet method), 84
rolling_max() (nctoolkit.DataSet method), 69
rolling_mean() (nctoolkit.DataSet method), 68
rolling_min() (nctoolkit.DataSet method), 69
rolling_range() (nctoolkit.DataSet method), 70
rolling_sum() (nctoolkit.DataSet method), 69
run() (nctoolkit.DataSet method), 70

S
select() (nctoolkit.DataSet method), 80
set_date() (nctoolkit.DataSet method), 82
set_gridtype() (nctoolkit.DataSet method), 111
set_longnames() (nctoolkit.DataSet method), 63
set_missing() (nctoolkit.DataSet method), 63
set_precision() (nctoolkit.DataSet method), 110
set_units() (nctoolkit.DataSet method), 63

shift() (nctoolkit.DataSet method), 82
size (nctoolkit.DataSet property), 61
spatial_max() (nctoolkit.DataSet method), 97
spatial_mean() (nctoolkit.DataSet method), 96
spatial_min() (nctoolkit.DataSet method), 96
spatial_percentile() (nctoolkit.DataSet method), 97
spatial_range() (nctoolkit.DataSet method), 97
spatial_stdev() (nctoolkit.DataSet method), 98
spatial_sum() (nctoolkit.DataSet method), 97
spatial_var() (nctoolkit.DataSet method), 98
split() (nctoolkit.DataSet method), 102
sqrt() (nctoolkit.DataSet method), 75
square() (nctoolkit.DataSet method), 75
start (nctoolkit.DataSet property), 61
strip_variables() (nctoolkit.DataSet method), 111
subtract() (nctoolkit.DataSet method), 75
sum_all() (nctoolkit.DataSet method), 63
surface_mask() (nctoolkit.DataSet method), 111

T
tcumsum() (nctoolkit.DataSet method), 94
time_interp() (nctoolkit.DataSet method), 84
times (nctoolkit.DataSet property), 60
timestep_interp() (nctoolkit.DataSet method), 84
tmax() (nctoolkit.DataSet method), 91
tmean() (nctoolkit.DataSet method), 89
tmedian() (nctoolkit.DataSet method), 90
tmin() (nctoolkit.DataSet method), 90
to_dataframe() (nctoolkit.DataSet method), 103
to_latlon() (nctoolkit.DataSet method), 83
to_nc() (nctoolkit.DataSet method), 102
to_xarray() (nctoolkit.DataSet method), 103
top() (nctoolkit.DataSet method), 64
tpercentile() (nctoolkit.DataSet method), 91
trange() (nctoolkit.DataSet method), 92
tstdev() (nctoolkit.DataSet method), 93
tsum() (nctoolkit.DataSet method), 92
tvar() (nctoolkit.DataSet method), 94
tvariance() (nctoolkit.DataSet method), 93

V
variables (nctoolkit.DataSet property), 60
vertical_cumsum() (nctoolkit.DataSet method), 67
vertical_integration() (nctoolkit.DataSet method),

67
vertical_interp() (nctoolkit.DataSet method), 65
vertical_max() (nctoolkit.DataSet method), 66
vertical_mean() (nctoolkit.DataSet method), 65
vertical_min() (nctoolkit.DataSet method), 66
vertical_range() (nctoolkit.DataSet method), 66
vertical_sum() (nctoolkit.DataSet method), 67

Y
years (nctoolkit.DataSet property), 60

118 Index

nctoolkit

Z
zip() (nctoolkit.DataSet method), 104
zonal_max() (nctoolkit.DataSet method), 99
zonal_mean() (nctoolkit.DataSet method), 99
zonal_min() (nctoolkit.DataSet method), 99
zonal_range() (nctoolkit.DataSet method), 99

Index 119

	Installation
	How to install nctoolkit
	Plotting issue
	Jupyter notebook issue
	CDO update issue
	Python dependencies
	System dependencies

	Introduction to nctoolkit
	It lets you quickly visualize data
	It lets you calculate spatial averages
	It lets you do mathematical operations
	It lets you crop data
	It lets you regrid data
	It lets you calculate temporal averages
	It lets you calculate anomalies
	It lets you calculate zonal averages
	Getting started with nctoolkit

	News
	Release of v0.4.4
	Release of v0.4.3
	Release of v0.4.2
	Release of v0.4.1
	Release of v0.4.0
	Release of v0.3.9
	Release of v0.3.8
	Release of v0.3.7
	Release of v0.3.6
	Release of v0.3.5
	Release of v0.3.4
	Release of v0.3.2
	Release of v0.3.1
	Release of v0.3.0

	Datasets
	Data format requirements
	Opening datasets
	Checking validity of source data
	Modifying datasets
	Lazy evaluation by default
	Method chaining
	Dataset attributes

	Plotting
	Internal: ncplot

	Importing and exporting data
	Opening single files and ensembles
	Opening files from urls/ftp
	Opening data available over thredds servers or OPeNDAP
	Exporting datasets
	Save as a netCDF
	Convert to pandas dataframe
	Interacting with xarray datasets

	Interpolation
	Horizontal interpolation
	Interpolating to a set of coordinates
	Interpolating to a regular lonlat grid
	Interpolating to another dataset’s grid
	How to reuse the weights for regridding
	Horizontal Resampling
	Spatial Infilling
	Vertical interpolation

	Temporal statistics
	Calculating rolling averages
	Calculating anomalies
	Calculating climatologies
	Calculating climatologies
	Cumulative sums

	Subsetting data
	Selecting variables
	Selecting years
	Selecting months
	Selecting seasons
	Selecting timesteps
	Geographic subsetting

	Manipulating variables
	Creating new variables
	Applying mathematical functions to dataset variables
	Using spatial statistics
	Functions that work with nctoolkit variables
	Simple mathematical operations on variables
	Simple numerical comparisons

	Adding or subtracting datasets
	Automatic methods available

	Multi-file datasets
	Merging multi-file datasets
	Speeding up multi-file processing
	Ensemble statistics

	Parallel processing
	Parallel processing of multi-file datasets
	Parallel processing using multiprocessing

	Examples
	Global sea surface temperature since 1850
	More to come….

	Random Data Hacks
	Shifting time
	Adding cell areas to a dataset
	Changing the format of the netCDF files in a dataset
	Getting rid of dimensions with only one value
	Removing leap days
	Renaming variables

	Global settings
	Setting global settings using a configuration file

	Backends
	Using CDO commands
	Using NCO commands

	Cheat sheet
	API Reference
	Session options
	nctoolkit.options

	Opening/copying data
	nctoolkit.open_data
	nctoolkit.open_url
	nctoolkit.open_thredds
	nctoolkit.open_geotiff
	nctoolkit.from_xarray
	nctoolkit.DataSet.copy

	Merging or analyzing multiple datasets
	nctoolkit.merge
	nctoolkit.cor_time
	nctoolkit.cor_space

	Adding and removing files to a dataset
	nctoolkit.append
	nctoolkit.remove

	Accessing attributes
	nctoolkit.DataSet.variables
	nctoolkit.DataSet.contents
	nctoolkit.DataSet.times
	nctoolkit.DataSet.years
	nctoolkit.DataSet.months
	nctoolkit.DataSet.levels
	nctoolkit.DataSet.size
	nctoolkit.DataSet.current
	nctoolkit.DataSet.history
	nctoolkit.DataSet.start
	nctoolkit.DataSet.calendar
	nctoolkit.DataSet.ncformat

	Plotting
	nctoolkit.DataSet.plot

	Variable modification
	nctoolkit.DataSet.assign
	nctoolkit.DataSet.rename
	nctoolkit.DataSet.set_missing
	nctoolkit.DataSet.sum_all

	netCDF file attribute modification
	nctoolkit.DataSet.set_longnames
	nctoolkit.DataSet.set_units

	Vertical/level methods
	nctoolkit.DataSet.top
	nctoolkit.DataSet.bottom
	nctoolkit.DataSet.vertical_interp
	nctoolkit.DataSet.vertical_mean
	nctoolkit.DataSet.vertical_min
	nctoolkit.DataSet.vertical_max
	nctoolkit.DataSet.vertical_range
	nctoolkit.DataSet.vertical_sum
	nctoolkit.DataSet.vertical_integration
	nctoolkit.DataSet.vertical_cumsum
	nctoolkit.DataSet.invert_levels
	nctoolkit.DataSet.bottom_mask

	Rolling methods
	nctoolkit.DataSet.rolling_mean
	nctoolkit.DataSet.rolling_min
	nctoolkit.DataSet.rolling_max
	nctoolkit.DataSet.rolling_sum
	nctoolkit.DataSet.rolling_range

	Evaluation setting
	nctoolkit.DataSet.run

	Cleaning functions
	Ensemble creation
	nctoolkit.create_ensemble

	Arithemetic methods
	nctoolkit.DataSet.abs
	nctoolkit.DataSet.add
	nctoolkit.DataSet.exp
	nctoolkit.DataSet.log
	nctoolkit.DataSet.log10
	nctoolkit.DataSet.multiply
	nctoolkit.DataSet.power
	nctoolkit.DataSet.sqrt
	nctoolkit.DataSet.square
	nctoolkit.DataSet.subtract
	nctoolkit.DataSet.divide

	Ensemble statistics
	nctoolkit.DataSet.ensemble_mean
	nctoolkit.DataSet.ensemble_min
	nctoolkit.DataSet.ensemble_max
	nctoolkit.DataSet.ensemble_percentile
	nctoolkit.DataSet.ensemble_range
	nctoolkit.DataSet.ensemble_stdev
	nctoolkit.DataSet.ensemble_sum
	nctoolkit.DataSet.ensemble_var

	Subsetting operations
	nctoolkit.DataSet.crop
	nctoolkit.DataSet.select
	nctoolkit.DataSet.drop

	Time-based methods
	nctoolkit.DataSet.set_date
	nctoolkit.DataSet.shift

	Interpolation and resampling methods
	nctoolkit.DataSet.regrid
	nctoolkit.DataSet.to_latlon
	nctoolkit.DataSet.resample_grid
	nctoolkit.DataSet.time_interp
	nctoolkit.DataSet.timestep_interp
	nctoolkit.DataSet.fill_na
	nctoolkit.DataSet.box_mean
	nctoolkit.DataSet.box_max
	nctoolkit.DataSet.box_min
	nctoolkit.DataSet.box_sum
	nctoolkit.DataSet.box_range

	Masking methods
	nctoolkit.DataSet.mask_box

	Anomaly methods
	nctoolkit.DataSet.annual_anomaly
	nctoolkit.DataSet.monthly_anomaly

	Statistical methods
	nctoolkit.DataSet.tmean
	nctoolkit.DataSet.tmin
	nctoolkit.DataSet.tmedian
	nctoolkit.DataSet.tpercentile
	nctoolkit.DataSet.tmax
	nctoolkit.DataSet.tsum
	nctoolkit.DataSet.trange
	nctoolkit.DataSet.tvariance
	nctoolkit.DataSet.tstdev
	nctoolkit.DataSet.tcumsum
	nctoolkit.DataSet.tvar
	nctoolkit.DataSet.cor_space
	nctoolkit.DataSet.cor_time
	nctoolkit.DataSet.spatial_mean
	nctoolkit.DataSet.spatial_min
	nctoolkit.DataSet.spatial_max
	nctoolkit.DataSet.spatial_percentile
	nctoolkit.DataSet.spatial_range
	nctoolkit.DataSet.spatial_sum
	nctoolkit.DataSet.spatial_stdev
	nctoolkit.DataSet.spatial_var
	nctoolkit.DataSet.centre
	nctoolkit.DataSet.zonal_mean
	nctoolkit.DataSet.zonal_min
	nctoolkit.DataSet.zonal_max
	nctoolkit.DataSet.zonal_range
	nctoolkit.DataSet.meridonial_mean
	nctoolkit.DataSet.meridonial_min
	nctoolkit.DataSet.meridonial_max
	nctoolkit.DataSet.meridonial_range

	Merging methods
	nctoolkit.DataSet.merge

	Splitting methods
	nctoolkit.DataSet.split

	Output and formatting methods
	nctoolkit.DataSet.to_nc
	nctoolkit.DataSet.to_xarray
	nctoolkit.DataSet.to_dataframe
	nctoolkit.DataSet.zip
	nctoolkit.DataSet.format

	Miscellaneous methods
	nctoolkit.DataSet.na_count
	nctoolkit.DataSet.na_frac
	nctoolkit.DataSet.distribute
	nctoolkit.DataSet.collect
	nctoolkit.DataSet.cell_area
	nctoolkit.DataSet.first_above
	nctoolkit.DataSet.first_below
	nctoolkit.DataSet.last_above
	nctoolkit.DataSet.last_below
	nctoolkit.DataSet.cdo_command
	nctoolkit.DataSet.nco_command
	nctoolkit.DataSet.compare
	nctoolkit.DataSet.gt
	nctoolkit.DataSet.lt
	nctoolkit.DataSet.reduce_dims
	nctoolkit.DataSet.reduce_grid
	nctoolkit.DataSet.set_precision
	nctoolkit.DataSet.check
	nctoolkit.DataSet.is_corrupt
	nctoolkit.DataSet.fix_nemo_ersem_grid
	nctoolkit.DataSet.set_gridtype
	nctoolkit.DataSet.surface_mask
	nctoolkit.DataSet.strip_variables

	Ecological methods
	nctoolkit.DataSet.phenology

	Package info
	Acknowledgements
	Bugs and issues
	Contributions welcome

	Python Module Index
	Index

