

nctoolkit: Fast and easy analysis of netCDF data in Python

nctoolkit is a comprehensive and computationally efficient Python package for analyzing and post-processing netCDF data.

Who is nctoolkit for?

Everyone from casual to regular users of netCDF data will find nctoolkit useful. Casual users will appreciate the easy ability to do such as things as matching up point observation data with gridded netCDF data. For expert users, nctoolkit provides the ability to carry out 80-100% of your day to day analysis and post-processing.

What type of data is nctoolkit designed for?

nctoolkit is designed primarily with climate and oceanic data in mind. If you work with this type of data, nctoolkit can help you do it quickly and efficiently.

What systems can nctoolkit work on?

nctoolkit requires a Linux or macOS operating system.

What can nctoolkit do?

The core abilities of nctoolkit include:

	Cropping to geographic regions

	Interactive plotting of data

	Subsetting to specific time periods

	Calculating time averages

	Calculating spatial averages

	Calculating rolling averages

	Calculating climatologies

	Creating new variables using arithmetic operations

	Calculating anomalies

	Horizontally and vertically remapping data

	Calculating the correlations between variables

	Calculating vertical averages for the likes of oceanic data

	Calculating ensemble averages

	Calculating phenological metrics

nctoolkit is developed as open source software by the Marine Systems Modelling group at Plymouth Marine Laboratory. [https://www.pml.ac.uk/science/Marine-Systems-Modelling/]

[image: _images/pml-logo.gif]

Installation

How to install nctoolkit

You will need a Linux or Mac operating system for nctoolkit to work. It will not work on Windows due to system requirements.

The best and easiest way to install nctoolkit is to use conda. This will install all system dependencies, and nctoolkit will just work out of the box. This can be done as follows:

$ conda install -c conda-forge nctoolkit

Conda can often install a very old version of nctoolkit. So you might want to install a recent version:

$ conda install -c conda-forge nctoolkit=0.9.4

Mamba is a smoother way to manage conda environments. If you don’t use it, you should try. Install it from here [https://github.com/conda-forge/miniforge/].

Once mambaforge is installed you can install nctoolkit as follows:

$ mamba install -c conda-forge nctoolkit

This will be much faster to install than using conda, because mamba resolves environments much faster.

Note that recent releases are not available on macOS on conda. This issue is being investigated at the minute, and will hopefully be resolved shortly. In the meantime, if you are using macOS, it is best to install using pip.

If you do not use conda, you can install nctoolkit using pip. The package is available from the Python Packaging Index. [https://pypi.org/project/nctoolkit/] To install nctoolkit using pip:

$ pip install nctoolkit

This will install the core dependencies of nctoolkit. If you want slightly better plots, you can install all dependencies:

$ pip install nctoolkit[complete]

Once you have installed nctoolkit using pip, you will need to install the system dependencies listed below.

To install the development version from GitHub:

$ pip install git+https://github.com/r4ecology/nctoolkit.git

How to get better looking plots

If you have installed the non-complete version of nctoolkit from pypi, you might also want to install cartopy to get better looking plots. This has some additional dependencies, so you may need to follow their guide here [https://pypi.org/project/nctoolkit/] to ensure cartopy is installed fully.

If you installed nctoolkit using conda, you can install cartopy as follows:

$ mamba install -c conda-forge cartopy

$ conda install -c conda-forge cartopy

Cartopy is not installed by default because installation can be slow or difficult on pypi or conda. However, no such issues exist on mamba. So, use mamba.

Python dependencies

	Python (3.8 or later)

	numpy [http://www.numpy.org/] (1.14 or later)

	pandas [http://pandas.pydata.org/] (0.24 or later)

	xarray [http://xarray.pydata.org/en/stable/] (0.14 or later)

	netCDF4 [https://unidata.github.io/netCDF4-python/netCDF4/index.html] (1.53 or later)

	ncplot [https://ncplot.readthedocs.io/en/stable/]

	hvplot [https://hvplot.holoviz.org/]

	holoviews [https://holoviews.org/]

	matplotlib [https://matplotlib.org/]

	bokeh [https://bokeh.org/]

	panel [https://panel.holoviz.org/]

	metpy [https://unidata.github.io/MetPy/latest/index.html]

	scipy [https://www.scipy.org/]

System dependencies

There are two main system dependencies: Climate Data Operators [https://code.mpimet.mpg.de/projects/cdo/wiki], and NCO [http://nco.sourceforge.net/]. The easiest way to install them is using conda:

$ conda install -c conda-forge cdo

$ conda install -c conda-forge nco

or mamba:

$ mamba install -c conda-forge cdo

$ mamba install -c conda-forge nco

CDO is necessary for the package to work. NCO is an optional dependency and does not have to be installed.

If you are working on an Ubuntu system, you should be able to install CDO as follows:

$ sudo apt install cdo

If you want to install CDO from source, you can use one of the bash scripts available here. [https://github.com/r4ecology/nctoolkit/tree/master/cdo_installers]

Introduction to nctoolkit

nctoolkit is a multi-purpose tool for analyzing and post-processing netCDF files.
It is designed explicitly with climate change and oceanographic work in mind. Under the hood, it uses Climate Data Operators [https://code.mpimet.mpg.de/projects/cdo/] (CDO), but it operates as a stand-alone package with no knowledge of CDO being required to use it.

Let’s look at what it can do using a historical global dataset of sea surface temperature, which you can find here [https://psl.noaa.gov/data/gridded/data.cobe2.html].

The preferred way to import nctoolkit is:

import nctoolkit as nc

It lets you quickly visualize data

nctoolkit offers plotting functionality that will let you automatically plot data from almost any type of netCDF file. It’s as simple as the following, which calculates mean historical sea surface temperature and then plots it:

ds = nc.open_data("sst.mon.mean.nc")
ds.subset(year = 2000)
ds.plot()

 News

News

Release of v0.9.2

Version 0.9.1 will be released in April 2023.

This release will contain a new method for producing high quality static plots. Yuri Artioli of Plymouth Marine Laboratory contributed the core code to this new pub_plot method.

A new method, set, will be introduced that will make it easier to rename variables, and change units and long names etc.

Some improvements will be made to internals.

Release of v0.9.1

Version 0.9.1 was released on the 19th of April 2023. This was a quick release to deal with some breaking changes to add/subtract etc. methods due to the release of pandas 2.0.0.

Release of v0.9.0

Version 0.9.0 was released on 2nd March 2023. This is a major(ish) release with some breaking changes related to plotting.

On pypi, cartopy has been switched to an optional dependency because it was causing installation difficulties for some users. You can now do a “complete” installation using pip to get all optional dependencies:

$ pip install nctoolkit[complete]

This does not impact the conda version, which will behave as before.

Support is now available for Python 3.11.

File paths with spaces are now supported.

Release of v0.8.6

Version 0.8.6 was released on 23rd December 2022. This is a minor releases that tidies up some issues and has some method enhancements.

The regrid and to_latlon methods can now be more efficient for multi-file datasets where all files have the same grid. Previously, the methods identified the grids for all methods. You
can now set the one_grid argument to True, which will result in the methods assuming all files have the same grid, and only the first file being checked.

There was an issue with multi-file datasets in parallel in Python 3.8 and 3.9. A confusing TypeError was being thrown due to signalling issues by multiprocessing. This gave the impression there was
a problem with processing when there wasn’t one. This problem is now fixed.

Release of v0.8.5

Version 0.8.5 was released on 14th December 2022. This is a minor release that deals with clean up issues on Jupyter notebooks. A change in a recent version of ipykernel was causing nctoolkit to not automatically remove
temporary files on exit, though only in jupyter notebooks. This should now be fixed.

The annual_anomaly method now lets users temporally align the output, in the same way as other temporal methods such as roll_mean.

Some improvements have been made to internals for better warnings and errors.

Release of v0.8.4

Version 0.8.4 was released on 6th December 2022.

This update improves the ability to handle missing values. A method iss introduced for changing the fill value missing values, set_fill.

Another method missing_as is introduced. This will do the opposite of as_missing. Instead of setting a range of values to missing values, it will set missing values to a constant value.

Dataset contents will now show the fill value for variables. Furthermore, open_data will now check if the fill value is zero, which can cause problems for logical comparisons etc.

Release of v0.8.2

Version 0.8.2 was released on 25h November 2022. This release changed plotting so that it does not show coastlines by default.

Plotting with coastlines was causing plotting to crash on some systems due to issues with how nctoolkit’s Python dependencies work with non-Python dependencies. Essentially plotting could crash if cartopy and pyproj were importable, but not fully functional. These were not a problem with nctoolkit installations from conda, which will install non-Python dependencies, but some non-conda insttallations would no longer plot maps as a Python dependency could be incompatible with the non-Python dependencies on user systems.

If you want to plot the coastline, do the following:

ds.plot(coast=True)

This is not an ideal fix, but it was necessary as a high proportion of users have a semi-functional cartopy installation, and there is no way for them to know that this is causing the plotting problem. A future release will hopefully provide automatic coastlines when cartopy and pyproj are fully functional on people’s systems.

Release of v0.8.0

Version 0.8.0 was released on 17th November 2022. This was a major release that introduces some breaking changes.

The major improvement in this release is to vertical methods. All vertical methods should now work with files with vertical axes
that are either consistent or vary spatially. Before some methods only worked with z-levels, i.e. files with fixed vertical levels. This
change will result in a requirement that vertical_mean, vertical_interp and vertical_integration need users to specify whether the vertical
levels are fixed spatially, using the fixed arg.

There were also some improvements to internals.

Release of v0.7.6

Release data: 30th September 2022.

This is a minor release that significantly simplifies basic arithmetic and logical operations.

Simple methods such as +, - etc. can now use standard python syntax.

For example, if you wanted to add 2 to a dataset you can now do the following:

ds.add(2)

as this instead

ds+2

The same goes for logical operators. You can do the following to identify if the values in a datset are below 2:

ds<2

whereas you previously had to do this:

ds.compare(“<2”)

Note: because nctoolkit methods only modify datasets and do not return datasets, the following will not work:

ds1+ds2+2

Instead, you would need to do:

ds1+ds2
ds1+2

Release of v0.7.1

Release data: 10th September 2022.

This is a major release with some breaking changes.

The deprecated select method has now been removed. Users should now use the subset method.

A progress bar will now display when processing large datasets. This will only show when nctoolkit thinks something will take a while. If you want to always show a progress
bar for multi-file datasets, you can do this: nc.options(progress = ‘on’).

Release of v0.6.0

Release date: 15th August 2022.

This is a major release that introduces some breaking changes. All methods that carry out temporal averaging of any sort will now align output times to the right. This applies to methods such as
tmean and rolling_mean. The internals when align = “left” option have been modified, as the CDO call was sometimes giving incorrect results.

Release of v0.5.4

This is a minor release on August 10th 2022.

It improves the abilities of temporal methods, giving users the ability to select how they want times in output to be aligned.

For example, if you are calculating a rolling mean, you might want the output times to be the first, middle or final time in the temporal window. This release
will add that ability to nctoolkit’s temporal methods. Previously nctoolkit used CDO’s default methods, and did not allow users to do anything else. By default, output dates will be aligned to the middle.

The match_points methods were throwing an error when there were non-unique vertical values. This is now fixed.

Some improvements have been made to package internals.

Release of v0.5.1

This was a minor release made on 30th June 2022. It includes method enhancements.

The subset method now allows negative time slicing.

The set_missing method is deprecated and replaced with a less ambiguously named as_missing method.

The plot method will no longer show a plot title by default to make things cleaner.

The vertical_integration method now works with multi-file datasets and will not calculate vertical integrations for the thickness variable.

Some improvements have been made to improve error messages, and the check method now checks for data type of time.

A new method as_type has been added for changing data type of individual variables and coordinates.

Release of v0.5.0

This relase was made on 13th June 2022. The match_points method now allows extrapolation to vertical depths.

Release of v0.4.9

This relase was made on 9th June 2022. The subset method now accepts levels.

Release of v0.4.8

This release improves temporal merging of large datasets. Previously on some systems this would fail on datasets made up of more than 1,000 files due to system limits. Under the hood, nctoolkit now deals with this.

The merge method also now contains a check argument that can be used to speed up merging of large datasets when you know the files can be merged problem-free. Previously, merge always checked if files being merged had the same variables when doing a temporal merge. This can now be switched off if you are confident this does not need to happen.

Release of v0.4.7

Version 0.4.7 was released on June 5th 2022.

This release contained a new method called match_points that can do matchups with a spatiotemporal dataframe.

Release of v0.4.6

Version 0.4.6 was released on June 3rd 2022.

This release will enhance existing methods.

The select method will be replaced by subset. This behave in the way same way as select, but will also allow users to subset data base on longitude and latitude using the lon and lat as args.

The export methods to_nc, to_xarray and to_dataframe now allow only a subset of the data to be exported. Additional arguments can be sent to the methods, which will then be sent to the subset method.

The new matchpoint methods for matching netCDF and point data have been smoothed out with additional options.

Minor bug fix: The weighted in datasets with recycled regridding weights were not copied properly. This is now fixed.

Release of v0.4.5

Version 0.4.5 was released in late May 2022. This was a minor release that fixed an issue with ds.variables when there were a) many variables and b) CDO version above 2.0.0.

Release of v0.4.4

Version 0.4.4 was released in late May 2022.

This version introduces a new class called Matchpoint which will allow automated matchups between netCDF files and point observations in pandas dataframes. This class is created using nc.open_matchpoint. Matchups are generated by using the add_data, add_points, add_depths, and matchup methods.

For datasets, ds now provides a more informative summary of dataset contents.

The split method now automatically sorts the files, so that they are sorted by date when temporal splitting occurs.

The methods surface, merge_time and tvariance` have been removed after periods of deprecation. Use top, merge and tvar instead.

Release of v0.4.3

Version 0.4.3 was released in May 2022. This is release with some new methods, improvements to internals some bug fixes. Code written for previous 0.4x versions of nctoolkit will be compatible.

This version will be compatible with CDO versions 2.0.5x.

A new function open_geotiff will allow GeoTiff files to be opened. This is a wrapper around rioxarray, which will convert the GeoTiff to NetCDF. It will require rioxarray to be installed.

A new method surface_mask has been added to enable identifying top levels with data in cases when there are missing values in the actual top level.

A new method is_corrupt has been added. This can identify whether NetCDF files are likely to be corrupt. Under-the hood, methods will now suggest running is_corrupt when system errors imply the files are corrupt.

The methods to_xarray and to_dataframe no long accept the cdo_times argument, as this has essentially been redundant for a few nctoolkit versions.

The plot method now lets users send kwargs to hvplot to make customizations, such as log-scales an option. This will require the latest version of ncplot.

The select method now lets user select days of month, using ds.select(day = 1).

The split method now allows splitting by timestep using split("timestep").

Release of v0.4.2

Version 0.4.2 was released in March 2022.

This is a minor release with a couple of method enhancements. Plots can now be saved to html files using the out arguments. The nco_command method now works over multiple cores when these are set using nc.options.

Release of v0.4.1

Version 0.4.1 was released in March 2022. This is a minor release focusing on improving nctoolkit internals.

A new method, called check is introduced that can be used to troubleshoot data problems and to ensure there are no obvious data issues (such as a lack of CF-compliance).

Users can now access dataset calendars using ds.calendar.

The drop method now lets you remove time steps using the times argument.

The dataset attribute variables_detailed is now removed after being replaced by contents in version 0.3.9.

This version will recommend CDO versions greater than 1.9.7, because ensuring nctoolkit compatibility with earlier versions was becoming difficult and likely of little need to users.

Some coding improvements have enhanced the performance of the add, subtract etc. methods.

Bug fixes: The methods multiply etc. failed when datasets did not have time as a dimension in version 0.4.0. This is now fixed. Previously, ds.contents always returned None for the number of time steps. Now fixed.

Release of v0.4.0

Version 0.4.0 was released in January 2022. This is a major release that features some breaking changes. Methods for adding, subtracting, multipling and substracting datasets from each other will be enhanced. Until now these methods used a simplistic approach values from matching time steps were added to each other, etc. So if you are subtracting a 12 time step file from a dataset, only the first 12 time steps were subtracted from. However, often this is not what you want. For example, you might want to subtract yearly months from a file which contains montly values for each year.

This version of nctoolkit updates these methods so that it can figure out what kind of addition etc. it should carry out. For example, if you have a dataset which has monthly values for each year from 1950 to 1999, and use subtract to subtract the values from a file which contains annual means for each year from 1950, it will subtract the annual mean for 1950 from each month in 1950 and the the annual mean for 1951 from each month in 1951, and so on.

Users are now able to specify the numeric precision of datasets using ds.set_precision. By default uses the underlying netCDF file’s data type. This is normally not a problem. However, when the data type is integer, this can cause problems. nc.open_data has been updated with this issue in mind. It will now warn users when the data type of the netCDF is integer, and it suggested switching to float ‘F64’ or ‘F32’.

The drop method has been enhanced. It now accepts day, month and year as arguments to enable dropping specific time periods. For example ds.drop(month = 2, day = 29) will remove leap days. Code written to use the old drop method will now fail, as keywords are now required.

The method surface has now been renamed top for consistency with bottom. surface is deprecated and will be removed in a few months.

The split method now allows users to split datasets into multiple files by variable.

ds.times now returns a datetime object, not a str as before.

Release of v0.3.9

Version 0.3.9 was released in November 2021. This is minor release focusing on under-the-hood improvements and new methods.

A new method, from_xarray is added for converting xarray datasets to nctoolkit datasets.

Methods for identifying how many missing values appear in datasets have been added: na_count and na_frac. These will identify the number or fraction of values that are missing values in each grid cell. The methods operate the same way as the temporal methods. So ds.na_frac(“year”) will result in what fraction of values are missing values each year.

Methods for better upscaling of datasets will be added: box_mean, box_sum, box_max. This will allow you to upscale to, for example, each 10 by 10 grid box using the mean of that grid box. This is useful for upscaling things like population data where you want the upscaled grid boxes to represent the entirety of the grid box, not the centre.

Improvements to merge have been made. When variables are not included in all files nctoolkit will now only merge those in each file in a multi-file dataset. Previously it threw an error.

Functions for finding the times and months in netCDF files are now available: nc_years and ``nc_months`.

The attribute variables_detailed has been changed to contents. It will also now give the number of time steps available for each variable.

cdo_command now allows users to specify whether the CDO command used is an ensemble method. Previously methods applied on a file by file basis.

Release of v0.3.8

Version 0.3.8 was released in October 2021. This is a minor release, focusing on under-the-hood improvements and introducing better handling of files with varying vertical layers.

A method, vertical_integration for calculating vertically integrated totals for netCDF data of the likes of oceanic data, where the vertical levels vary spatially, were introduced. vertical_mean has been improved and can now calculate vertical mean in cases where the cell thickness varies in space.

merge_time is deprecated, and its functionality will be incorporated into merge. So, following this release ensemble merging should use merge.

open_url is now able to handle multiple urls. Previously it could only handle one.

Some under-the-hood improvements have been made to assign to ensure that truth statements do not occassionally throw an error.

Release of v0.3.7

Version 0.3.7 was released in August 2021. This is a minor release.

New mathematical methods for simple operations on variables were added: abs, power, square, sqrt, exp, log and log10. These methods match numpy names.

Bug fixes: assign previously did not work with log10. Now fixed.

compare_all was deleted after a period of deprecation.

Release of v0.3.6

Version 0.3.6 was released in July 2021. This was a minor release.

New methods ensemble_var and ensemble_stdev were introduced for calculating variance and standard deviation across ensembles. The method tvariance will be deprecated and is now renamed tvar for naming consistency.

Release of v0.3.5

Version 0.3.5 was released in May 2021.

This is a minor release focusing on some under-the-hood improvements in performance and a couple of new methods.

It drops support for CDO version 1.9.3, as this is becoming too time-consuming to continue given the increasingly low reward.

A couple of new methods have been added. distribute enables files to be split up spatially into equally sized m by n rectangles. collect is the reverse of distribute. It will collect distributed data into one file.

In prior releases assign calls could not be split over multiple lines. This is now fixed.

There was a bug in previous releases where regrid did not work with multi-file datasets. This was due to the enabling of parallel processing with nctoolkit. The issue is now fixed.

The deprecated methods mutate and assign have now been removed. Variable creation should use assign.

Release of v0.3.4

Version 0.3.3 was released in April 2021.

This was a minor release focusing on performance improvements, removal of deprecated methods and introduction of one new method.

A new method fill_na has been introduced that allows missing values to be filled with the distanced weighted average.

The methods remove_variables and cell_areas have been removed and are replaced permanently by drop and cell_area.

Release of v0.3.2

Version 0.3.2 was released in March 2021. This was a quick release to fix a bug causing to_nc to not save output in the base directory.

Release of v0.3.1

Version 0.3.1 was released in March 2021. This is a minor release that includes new methods, under-the-hood improvements and the removal of deprecated methods.

New methods are introduced for identifying the first time step will specific numerical thresholds are first exceeded or fallen below etc:
first_above, first_below, last_above and last_below. The thresholds are either single numbers or can come from a gridded dataset
for grid-cell specific thresholds.

Methods to compare a dataset with another dataset or netCDF file have been added: gt and lt, which stand for ‘greater than’ and ‘less than’.

Users are be able to recycle the weights calculated when interpolating data. This can enable much faster interpolation of multiple files with the
same grid.

The temporal methods replaced by tmean etc. have now been removed from the package. So monthly_mean etc. can no longer be used.

Release of v0.3.0

Version 0.3.0 was released in February 2021. This will be a major release introducing major improvements to the package.

A new method assign is now available for generating new variables. This replaces the mutate and transmute, which were
place-holder functions in the early releases of nctoolkit until a proper method for creating variables was put in place.
assign operates in the same way as the assign method in Pandas. Users can generate new variables using lambda functions.

A major-change in this release is that evaluation is now lazy by default. The previous default of non-lazy evaluation was designed
to make life slightly easier for new users of the package, but it is probably overly annoying for users to have to set evaluation
to lazy each time they use the package.

This release features a subtle shift in how datasets work, so that they have consistent list-like properties. Previously, the
files in a dataset given by the `current` attribute could be both a str or a list, depending on whether there was one or
more files in the dataset. This now always gives a list. As a result datasets in nctoolkit have list-like properties, with `append
and remove methods available for adding and removing files. remove is a new method in this release. As before datasets are iterable.

This release will also allow users to run nctoolkit in parallel. Previous releases allowed files in multi-file datasets to be
processed in parallel. However, it was not possible to create processing chains and process files in parallel. This is now possible
in version thanks to under-the-hood changes in nctoolkit’s code base.

Users are now able to add a configuration file, which means global settings do not need to be set in every session or in every script.

 Datasets

Datasets

Data format requirements

nctoolkit requires NetCDF data that follow the GDT, COARDS or CF Conventions. Its computational backend is CDO [https://code.mpimet.mpg.de/projects/cdo/], which be able to carry out most operations regardless of whether it is compliant with those conventions. In general, most data producers follow CF-conventions when generating NetCDF files, however if you are unclear if you are working with compliant files you can check here [https://pumatest.nerc.ac.uk/cgi-bin/cf-checker.pl].

Opening datasets

There are 3 ways to create a dataset: open_data, open_url or open_thredds.

If the data you want to analyze is available on your computer use open_data. This will accept either a path to a single file or a list of files. It will also accept wildcards.

If you want to use data that can be downloaded from a url, just use open_url. This will download the netCDF files to a temporary folder, and it can then be analyzed.

If you want to analyze data that is available from a thredds server or OPeNDAP, then use open_thredds. The file paths should end with .nc.

[1]:

import nctoolkit as nc

nctoolkit is using the latest version of Climate Data Operators version: 2.0.5

If you want to get a quick overview of the contents of a dataset, we can use the contents attribute. This will display a dataframe showing the variables available in the dataset and details about the variable, such as the units and long names. The example below opens a sea-surface temperature dataset [https://psl.noaa.gov/data/gridded/data.cobe2.html] and displays the contents.

[2]:

ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc")
ds

[2]:

<nctoolkit.DataSet>:
Number of files: 1
File contents:
 variable ntimes npoints nlevels long_name unit data_type
0 sst 12 64800 1 Long Term Mean Monthly Means of Global Sea Surface Temperature degC F32
1 valid_yr_count 12 64800 1 count of non-missing values used in mean None I16

Checking validity of source data

nctoolkit should work out of the box with most NetCDF data. However, it is possibly the format of the data could be incompatible with the system libraries used by nctoolkit or the files could be corrupt. To carry out a general check on the data use the check method as follows:

[]:

ds.check()

Checking data types

The variable I16 has integer data type. Consider setting data type to float 'F64' or 'F32' using set_precision.

Checking time data type

Running CF-compliance checks

Issue with variable: sst

ERROR: Invalid attribute name: _ChunkSizes

Checking grid consistency

This will carry out some basic checks on data format compatability. You should install the cfchecker [https://anaconda.org/conda-forge/cfchecker] package if you want check to check for CF-compliance.

If you want to check if the files in a dataset are corrupt, the following should tell you. This will simply read and write the data in the source files to a temporary file, which should be sufficient to ensure files are not corrupt.

[]:

ds.is_corrupt()

Modifying datasets

If you want to modify a dataset, you just need to use nctoolkit’s built in methods. These methods operate directly on the dataset itself. The example below selects the first time step in a sea surface temperature dataset and plots the result.

[]:

ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc")
ds.subset(time = 0)
ds.plot()

Underlying datasets are temporary files representing the current state of the dataset. We can access this using the current attribute:

[]:

ds.current

In this case, we have a single temporary file. Any temporary files will be generated and deleted, as needed, so there should be no need to manage them yourself.

Lazy evaluation by default

Look at the processing chain below.

[]:

ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc")
ds.assign(sst = lambda x: x.sst + 273.15)
ds.subset(months = 1)
ds.subset(lon = [-80, 20], lat = [30, 70])
ds.spatial_mean()

What is potentially wrong with this? It carries out four operations, so we absolutely do not want to create temporary file in each step. So instead of evaluating the operations line by line, nctoolkit only evaluates them either when you tell it to or it has to. So in the code example above we have told, nctoolkit what to do to that dataset, but have not told it to actually do any of it.

We can see this if we look at the current state of the dataset. It is still the starting point:

[]:

ds.current

If we want to evaluate this we can use the run method or methods such as plot that require commands to be evaluated.

[]:

ds.run()
ds.current

This method chaining ability within nctoolkit comes from Climate Data Operators (CDO) [https://code.mpimet.mpg.de/projects/cdo/], which is the backend computational engine for nctoolkit. nctoolkit does not require you to understand CDO, but if you want to see the underlying CDO commands used, just use the history attribute. In the example, below, you can see that 4 lines of Python code have been converted to a single CDO command.

[]:

ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc")
ds.assign(sst = lambda x: x.sst + 273.15)
ds.subset(months = 1)
ds.subset(lon = [-80, 20], lat = [30, 70])
ds.spatial_mean()
ds.history

Then if we run this, we can see the full command used:

[]:

ds.run()
ds.history

If you want to visualize a dataset, you just need to use plot:

[]:

ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.ltm.1981-2010.nc")
ds.subset(time = 0)
ds.plot()

Method chaining

When you start to use nctoolkit it is important to realize that it does not allow method chaining in the way pandas and xarray do. So the following will not work:

[]:

(
 ds
 .tmean()
 .spatial_mean()
 .add(1)
)

This is because this type of method chaining requires the methods to return an object. However, nctoolkit’s methods in general do not return objects. Instead they modify them.

You would need to do the following instead:

[]:

ds.tmean()
ds.spatial_mean()
ds.add(1)

Dataset attributes

You can find out key information about a dataset using its attributes. If you want to know the variables available in a dataset called ds, we would do:

[]:

ds.variables

If you want more details about the variables, access the contents attribute. This will tell you details such as long names, units, number of time steps etc. for each variable.

[]:

ds.contents

If you want to know the vertical levels available in the dataset, we use the following.

[]:

ds.levels

If you want to know the files in a dataset, we would do this. nctoolkit works by generating temporary files, so if you have carried out any operations, this will show a list of temporary files.

[]:

ds.current

If you want to find out what times are in the dataset we do this:

[]:

ds.times

If you want to find out what months are in the dataset:

[]:

ds.months

If you want to find out what years are in the dataset:

We can also access the history of operations carried out on the dataset. This will show the operations carried out by nctoolkit’s computational back-end CDO:

[]:

ds.history

 Data supported

Data supported

nctoolkit will support analysis of most netCDF data. However, there are some limitations and requirements.
Most operations in nctoolkit rely on Climate Data Operators (CDO) to perform the heavy lifting.
CDO requires that files have at most 4 dimensions, which should be longitude and latitude, and time and depth/height.
It provides support for structured grids such as regular lon/lat or curvilinear grids, and unstructured grids.

Horizontal grids

nctoolkit will work with more or less any structured horizontal grid, so long as it follows the GDT, COARDS or CF conventions.

It provides limited supported for unstructured horizontal grids. These grids are often idiosyncratic and require special treatment and therefore only limited functionality is available in CDO.
However, interpolation via the nearest neighbour method is supported. In some cases, the metadata of the netCDF file may need to be changed to allow CDO to work with the data.
So, if you are working with unstructured data and running into problems, reach out to us at the nctoolkit Discussions page [https://github.com/pmlmodelling/nctoolkit/discussions]).

In some cases methods may not be able to provide a fully accurate answer due to deficiencies in the underlying file metadata.
For example, the spatial_mean method needs to be able to calculate the area of each grid cell, but sometimes data providers fail to include this information in their files.
In such cases, warning messages will be printed to the screen, but you can reach out to us if you want a fix for data problems.

Vertical grids

nctoolkit provides support for vertical grids that have either consistent or varying horizontal levels. So, in almost all cases it will work with your data.
Occasionally, you may run into problems due to deficiencies in the raw netCDF files.
For example, for vertical averaging to be totally accurate, the thickness of each vertical level is required.
However, sometimes files do not contain this information, and there is no way to infer it.
At present, nctoolkit is focused on analyzing data, not correcting, and therefore is not designed to fix issues in the raw files.
However, if you run into any contact us here [https://github.com/pmlmodelling/nctoolkit/discussions]) and we can help you.

The time axis

So long as your time axis is CF-compliant, nctoolkit should have no problem handling it. However, CDO requires only one time axis.
If you have multiple time axes, it will pick one. This is almost never an issue, unless you have very idiosyncratic time axes.

Data types

nctoolkit supports all data types that CDO supports. This includes 32-bit and 64-bit floating point numbers, and 8-bit, 16-bit and 32-bit integers.
By default CDO, and therefore nctoolkit, will use the data type of the netCDF file for any computations. In general, this is not an issue.
However, some times you need to be careful when you are working with files with integer data formats. These may need to be changed to float using the set_precision method.

Similarly, you may run into rare problems due to poorly defined netCDF files that cause computational problems.
For example, netCDF files can have poorly defined maximum values that result in errors when carrying out simple calculations.

How to check if your files are CF compliant

If you are unsure if your files are CF compliant, you can check them using the CF checker [http://cfconventions.org/compliance-checker.html].
This is a great tool that will check your files for compliance with the CF conventions. If this throws any errors, then you might have issues analyzing the file with nctoolkit.
An error would imply that it is not possible for CDO to figure out the structure of the file, and therefore it will not be able to perform certain operations on it.
Most of the time you can fix these problems with CDO or NCO, so reach out to us if you need help.

How to deal with data problems

nctoolkit is designed primarily as a data analysis package. At present, it provides minimal functionality for fixing problems in the raw data, especially in the metadata.
This is expected to change in future releases. However, until then it is best to reach out to us if you run into problems. These can typically be solved using either NCO or CDO.

 Importing and exporting data

Importing and exporting data

nctoolkit can work with data available on local file systems, urls and over thredds and OPeNDAP.

Opening single files and ensembles

If you want to import a single netCDF file as a dataset, do the following:

import nctoolkit as nc
ds = nc.open_data(infile)

The open_data function can also import multiple files. This can be done in two ways. If we have a list of files we can do the following:

import nctoolkit as nc
ds = nc.open_data(file_list)

Alternatively, open_data is capable of handling wildcards. So if we have a folder called data, we can import all files in it as follows:

import nctoolkit as nc
ds = nc.open_data("data/*.nc")

Opening files from urls/ftp

If we want to work with a file that is available at a url or ftp, we can use the open_url function. This will start by downloading the file to a temporary folder, so that it can be analysed.

import nctoolkit as nc
ds = nc.open_url(www.foo.nc)

Opening data available over thredds servers or OPeNDAP

If you want to work with data that is available over a thredds server or OPeNDAP, you can use the open_thredds method. This will require that the url ends with “.nc”.

import nctoolkit as nc
ds = nc.open_thredds(www.foo.nc)

Exporting datasets

nctoolkit has a number of built in methods for exporting data to netCDF, pandas dataframes and xarray datasets.

Save as a netCDF

The method to_nc lets users export a dataset to a netCDF file. If
you want this to be a zipped netCDF file use the zip method before
to to_nc. An example of usage is as follows:

ds = nc.open_data(infile)
ds.tmean()
ds.zip()
ds.to_nc(outfile)

Convert to pandas dataframe

The method to_dataframe lets users export a dataset to a pandas
dataframe.

ds = nc.open_data(infile)
ds.tmean()
df = ds.to_dataframe()

Interacting with xarray datasets

If you want to move between nctoolkit and xarray dataset, you can use from_xarray and to_xarray.

The method to_xarray lets users export a dataset to an xarray
dataset. An example of usage is as follows:

ds = nc.open_data(infile)
ds.tmean()
xr_ds = ds.to_xarray()

If you want to convert an xarray dataset to an nctoolkit dataset, you can just the from_xarray function, as follows:

ds = nc.from_xarray(ds_xr)

Exporting subsets of data

If you want to only export a subset of the data you can do this by providing additional args to the to_nc, to_xarray and
to_dataframe methods. These args will then be sent to the subset method.

For example, if you only wanted to export the year 2000 to xarray, you would do the following:

ds.to_xarray(year = 2000)

Or if you wanted a spatial subset of the data you could do this:

ds.to_xarray(lon = [0, 90], lat = [0, 90])

 Subsetting data

Subsetting data

nctoolkit has many built in methods for subsetting data. The main method
is subset. This let’s you select specific variables, years, months,
seasons and timesteps.

Selecting variables

If you want to select specific variables, you would do the following:

ds.subset(variables = ["var1", "var2"])

If you only want to select one variable, you can do this:

ds.subset(variables = "var1")

Selecting years

If you want to select specific years, you can do the following:

ds.subset(years = [2000, 2001])

Again, if you want a single year the following will work:

ds.subset(years = 2000)

The select method allows partial matches for its arguments. So if we
want to select the year 2000, the following will work:

ds.subset(year = 2000)

In this case we can also select a range. So the following will work:

ds.subset(years = range(2000, 2010))

Selecting months

You can select months in the same way as years. The following examples
will all do the same thing:

ds.subset(months = [1,2,3,4])
ds.subset(months = range(1,5))
ds.subset(mon = [1,2,3,4])

Selecting seasons

You can easily select seasons. For example if you wanted to select
winter, you would do the following:

ds.subset(season = "DJF")

Selecting timesteps

You can select specific timesteps from a dataset in a similar manner.
For example if you wanted to select the first two timesteps in a dataset
the following two methods will work:

ds.subset(time = [0,1])
ds.subset(time = range(0,2))

Geographic subsetting

If you want to select a geographic subregion of a dataset, you can use
subset. This method will select all data within a specific
longitude/latitude box. You just need to supply the minimum longitude
and latitude required. In the example below, a dataset is cropped with
longitudes between -80 and 90 and latitudes between 50 and 80:

ds.subset(lon = [-80, 90], lat = [50, 80])

 Interpolation

Interpolation

nctoolkit features built in methods for horizontal and vertical interpolation.

Horizontal interpolation

We will illustrate how to carry out horizontal interpolation using a global dataset of global SST from NOAA. Find out more information about the datset here [https://psl.noaa.gov/data/gridded/data.cobe2.html].

The data is available using a thredds server. So we will work with the first time step, which looks like this:

import nctoolkit as nc
ds = nc.open_thredds("https://psl.noaa.gov/thredds/dodsC/Datasets/COBE2/sst.mon.mean.nc")
ds.subset(time = 0)
ds.plot()

 Plotting

Plotting

nctoolkit provides automatic plotting of netCDF data in a similar way to
the command line tool ncview.

If you have a dataset, simply use the plot method to create an
interactive plot that matches the data type.

We can illustate this using a sea surface temperature dataset available
here [https://psl.noaa.gov/data/gridded/data.cobe2.html].

Let’s start by calculating mean sea surface temperature for the year
2000 and plotting it:

import nctoolkit as nc
ff = "sst.mon.mean.nc"
ds = nc.open_data(ff)
ds.subset(year = 2000)
ds.plot()

 Temporal statistics

Temporal statistics

nctoolkit has a number of built-in methods for calculating temporal
statistics, all of which are prefixed with t: tmean, tmin,
tmax, trange, tpercentile, tmedian, tvariance,
tstdev and tcumsum.

These methods allow you to quickly calculate temporal statistics over
specified time periods using the over argument.

By default the methods calculate the value over all time steps
available. For example the following will calculate the temporal mean:

import nctoolkit as nc
ds = nc.open_data("sst.mon.mean.nc")
ds.tmean()

However, you may want to calculate, for example, an annual average. To
do this we use over. This is a list which tells the function which
time periods to average over. For example, the following will calculate
an annual average:

ds.tmean(["year"])

If you are only averaging over one time period, as above, you can simply
use a character string:

ds.tmean("year")

The possible options for over are “day”, “month”, “year”, and
“season”. In this case “day” stands for day of year, not day of month.

In the example below we are calculating the maximum value in each month
of each year in the dataset.

ds.tmax(["month", "year"])

Calculating rolling averages

nctoolkit has a range of methods to calcate rolling averages: rolling_mean, rolling_min, rolling_max, rolling_range and rolling_sum. These
methods let you calculate rolling statistics over a specified time window. For example, if you had daily data and you wanted to calculate a rolling weekly mean
value, you could do the following:

ds.rolling_mean(7)

If you wanted to calculated a rolling weekly sum, this would do:

ds.rolling_sum(7)

Calculating anomalies

nctoolkit has two methods for calculating anomalies: annual_anomaly and monthly_anomaly. Both methods require you to specify a baseline period
to calculate the anomaly against. They require that you specify a baseline period showing the minimum and maximum years of the climatological period to
compare against.

So, if you wanted to calculate the annual anomaly compared with a baseline period of 1950-1969, you would do this:

ds.annual_anomaly(baseline = [1950, 1969])

By default, the annual anomaly is calculated as the absolute difference between the annual mean in a year and the mean across the baseline period. However,
in some cases this is not suitable. Instead you might want the relative change. In that case, you would do the following:

ds.annual_anomaly(baseline = [1950, 1969], metric = "relative")

You can also smooth out the anomalies, so that they are calculated on a rolling basis. The following will calculate the anomaly using a rolling window of 10
years.

ds.annual_anomaly(baseline = [1950, 1969], window = 10)

Monthly anomalies are calculated in the same way:

ds.monthly_anomaly(baseline = [1950, 1969]

Here the anomaly is the difference between the value in each month compared with the mean in that month during the baseline period.

Calculating climatologies

This means we can easily calculate climatologies. For example the
following will calculate a seasonal climatology:

ds.tmean("season")

These methods allow partial matches for the arguments, which means you do
not need to remember the precise argument each time. For example, the
following will also calculate a seasonal climatology:

ds.tmean("Seas")

Calculating a climatological monthly mean would require the following:

ds.tmean("month")

and daily would be the following:

ds.tmean("day")

Calculating climatologies

This means we can easily calculate climatologies. For example the
following will calculate a seasonal climatology:

ds.tmean("season")

Cumulative sums

We can calculate the cumulative sum as follows:

ds.tcumsum()

Please note that this can only calculate over all time periods, and does
not accept an over argument.

 Multi-file datasets

Multi-file datasets

nctoolkit is built to handle multi-file datasets easily and efficiently.
Parallel processing of files, ensemble averaging and merging are all
easily done.

To create a multi-file dataset, you just need to supply a list of files
to open_data. Alternatively, you can use wild cards. The following
will create a multi-file dataset with all of the files in the foo
folder:

import nctoolkit as nc
ds = nc.open_data("foo/*.nc")

Standard nctoolkit methods can then be applied to each file within the
ensemble. For example, if we wanted a temporal mean of each file, we
would do the following:

ds.tmean()

Note, to avoid any confusion: this operation will only apply to
individual members of the multi-file dataset. We will later discuss
ensemble methods such as ensemble_mean, which let you calculate
statistics across the ensemble.

Merging multi-file datasets

There are two ways to merge mult-file datasets, time-based and
variable-based.

Merging by time is done as follows:

ds.merge("time")

This will join files together so that their times join up. It should be
used when files have the same variables and grids, but distinct times.

The second merging method is joining variables. In this case files
should have the same time steps or one file should have at most one time
step. This is done as follows:

ds.merge("variable")

By default, nctoolkit uses variable-based merging.

Speeding up multi-file processing

If you have access to multiple cores, it is very easy to ensure files
within a multi-file dataset are processed in parallel. Just set the
number of cores to be used. In the following case, we set it to 6:

nc.options(cores = 6)

This results in files being processed simultaneously with 6 cores.

If you are working on multi-file datasets, it is almost always much
faster to set the number of cores to a high number and carry out
operations on the files before merging them using merge and not the
other way round.

Ensemble statistics

In some cases, you will want to calculate averages etc. across the
multi-file dataset. For example, each file in a dataset could be from a
different climate model and you might simply the mean value across them.
This is very easily done. We can just calculate the ensemble mean as
follows:

ds.ensemble_mean()

This will calculate the mean for each time step. For example, if you
have an ensemble which is made of monthly projections of temperature
from 20 different climate models, ensemble_mean will calculate the
monthly mean of those 20 models.

Multiple ensemble methods are available: ensemble_mean,
ensemble_percentile, ensemble_stdev, ensemble_var,
ensemble_max, ensemble_min, ensemble_range and
ensemble_sum.

